首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(7):8601-8614
This paper investigates the physicochemical and thermo-physical properties of CaO–CaF2–SiO2 and CaO–TiO2–SiO2 based electrode coating for welding offshore structures. Twenty-one electrode coating compositions have been formulated using extreme vertices design method. The coating was crushed to powder form. The powder was characterized for weight loss, density, specific heat, enthalpy, thermal conductivity, diffusivity, and specific heat. Coating's structural analysis was done using X-Ray Diffraction and Fourier transformation. X-Ray Fluorescence, Thermogravimetric Analyzer, and Hot disc have been used to characterize the coating mixture. The regression analysis has been used to study the effect of individual constituents and their binary, tertiary interactions on the properties. The obtained output of properties has been optimized using multi-response optimization.  相似文献   

2.
《Ceramics International》2021,47(22):31666-31680
The present study replaced 3.30 and 9.00 mol.% BaO for CaO in a SiO2–B2O3–Al2O3–CaO–Na2O–P2O5 bioactive glass system used for implant coating applications. Variations of the glass structure, thermal properties, cytotoxicity, and radiopacity of glasses were studied. As demonstrated by the results, upon adding barium oxide to the glass structure, the weight density increased significantly, while a slight decrease in oxygen density was determined. Introducing barium oxide into glass composition did not cause any considerable change in the spectra of FTIR and Raman. It was demonstrated that the amount of bridging oxygen in the glass structure remained quite unaffected. The hot stage microscopy evaluations revealed further shrinkage of barium-containing frits due to lower viscosity and hence, higher viscous flow of these glasses. By substituting barium oxide for calcium oxide and increasing its concentration, the glass transition temperature (Tg) and the dilatometric softening temperature (Td) decreased, while the thermal expansion coefficient increased. Moreover, upon substituting 9 mol.% barium oxide for calcium oxide, a 30 °C reduction in maximum sintering temperature (Tms) of the glass was obtained, whereas the shrinkage rate was increased 1.7 times. It was indicated that the sintering process of barium-incorporated glasses would easily proceed without any phase crystallization. The barium-incorporated glasses exhibited more radiopacity. Additionally, no cytotoxic effect was caused by the substitution, and the Ba-containing glasses could be used for biomedical applications and implant coating as well.  相似文献   

3.
Based on research on cermet inert anodes for aluminium production, it has been suggested that nickel ferrite spinel might be suitable for use as a sidewall refractory in Hall-Héroult cells. A corrosion resistant sidewall would allow elimination of the frozen bath ledge, and has potentially huge benefits in terms of energy savings and increased productivity. However, little work has been done to assess nickel ferrite's suitability as a refractory.Dense nickel ferrite samples were prepared and characterized, and corrosion tests in cryolite based baths were conducted. Results confirm that the spinel does have good corrosion resistance. The corrosion mechanism is complex, involving grain boundary attack and formation of a Ni–Fe alloy. This alloy could pose a risk in terms of contamination of the aluminium. The use of additives to restrict penetration of grain boundaries may be the key to development of a successful spinel based refractory.  相似文献   

4.
Rare earth elements (REEs) have become increasingly important as ceramic materials. The RE-bearing slags contain massive REEs resources, whereas the lack of thermodynamic and kinetic data of REEs has brought great difficulties to efficient recovery of REEs from RE-bearing slags and the application in ceramics. According to the compositions of the RE-bearing slags in industrial production, the isothermal phase equilibria of CaO–SiO2–Ce2O3 system at 1500°C and 1300°C were constructed by means of liquid-quenching method combined with a series of analyses, which provides the thermodynamic data for the equilibria of REEs. On this basis, the crystallization behaviors of the RE phase (Ce9.33−xCax(SiO4)6O2−0.5x) was investigated, and the temperature range in which the RE phase crystallized singly in RE-bearing slags with a selected compositions was acquired. CCT and TTT diagrams for CaO–SiO2–Ce2O3 system were established to characterize the crystallization kinetics of the RE phase, and the favorable conditions for its crystallization and growth in RE-bearing slags were determined. In this study, the complete thermodynamic and kinetic basic data of REEs in CaO–SiO2–Ce2O3 system are provided for RE-bearing slags.  相似文献   

5.
《Ceramics International》2020,46(2):1545-1550
Ti-bearing blast furnace slags have been regarded as an important secondary material in modern society, and the efficient recycling of Ti oxides from it is of key interest. For this reason, more thermodynamic data is needed regarding the phase relations in different composition ranges and sections. Therefore, the equilibrium phase relations of CaO–MgO–SiO2–Al2O3–TiO2 system in a low w(CaO)/w(SiO2) ratio of 0.6–0.8 at 1250 °C in air and fixed concentrations of MgO and Al2O3, were investigated experimentally using a high temperature equilibration and quenching method followed by SEM-EDS (Scanning Electron Microscope and Energy Dispersive X-ray Spectrometer) analyses. The equilibrium solid phases of perovskite (CaO·TiO2), a pseudo-brookite solid solution (MgO·2TiO2, Al2O3·TiO2)ss, and anorthite (CaO·Al2O3·2SiO2) were found to coexist with the liquid phase at 1250 °C. The calculated results of Factsage and MTDATA were used for comparisons, and significant discrepancies were found between predictions and the experimental results. The 1250 °C isotherm has been constructed and projected on the CaO–SiO2–TiO2-8 wt.% MgO-14 wt% Al2O3 quasi-ternary plane of the phase diagram. The obtained results provide new fundamental data for Ti-bearing slag recycling processes, and they add new experimental features for thermodynamic modeling of the high-order titanium oxide-containing systems.  相似文献   

6.
《Ceramics International》2022,48(14):20033-20040
Generally, superhydrophilic self-cleaning coatings are prepared from semiconductors with photocatalytic properties. Organic pollutants attached to the coating surface can be degraded by its photocatalytic performance realizing a self-cleaning goal. Herein, SiO2–TiO2 composite particles were fabricated by the hydrolysis and precipitation of TiOSO4, and SiO2 microspheres were chosen as carriers, which are inexpensive and environmentally friendly. Then, superhydrophilic self-cleaning SiO2–TiO2 coatings were fabricated by spraying the composites on the surfaces of substrates. The morphology, structure and self-cleaning performance of the SiO2–TiO2 coating were characterized and tested. The results revealed that nano-TiO2 was loaded on the surfaces of SiO2 microspheres uniformly forming a hierarchical micro/nanostructure. The SiO2–TiO2 composite particles exhibited excellent photocatalytic degradation performance, and the degradation rate of methyl orange (10 ppm) was more than 98% under UV irradiation for 40 min. Furthermore, the coating prepared with the SiO2–TiO2 composite particles exhibited superhydrophilicity. A water droplet spreads completely on the coating surface in 0.35 s, and the contact angle reaches 0°. In addition, rhodamine B (RhB) and methylene blue (MB) on the coating surface can be degraded efficiently under sunlight irradiation. The SiO2–TiO2 composite particles can be sprayed directly on the surfaces of concrete, brick, wood, and glass slides. Therefore, the particles showed good adaptability to different substrates. The superhydrophilic property was due to the hydrophilicity of SiO2 and TiO2, the hierarchical micro/nanostructure of the SiO2–TiO2 composites, and the photoinduced superhydrophilicity of TiO2. The above experimental results show that the as-prepared superhydrophilic self-cleaning SiO2–TiO2 coating has a large application potential.  相似文献   

7.
Uranium–neodymium mixed oxides (U1−yNdy)Ox (y=0.2–0.85) were prepared by citrate gel-combustion and characterized by XRD. Single phase fluorite structure was observed up to y=0.80. For solid solutions with y>0.80 additional lines pertaining to hexagonal neodymium oxide were observed. Lattice thermal expansion of these samples was investigated by using high temperature X-ray diffraction (HTXRD). The coefficients of thermal expansion for (U1−yNdy)Ox for y=0.2, 0.4, 0.6, and 0.8 in the temperature range 298–1973 K were found to be 16.46, 16.64, 16.79, and 16.89×10−6 K−1, respectively. Heat capacity and enthalpy increment measurements were carried out by using DSC and drop calorimetry in the temperature range 298–800 K and 800–1800 K respectively. The Cp,m values at 298 K for (U1−yLay)Ox (y=0.2, 0.4, 0.6, and 0.8) are 63.4, 64.3, 61.8, and 58.9 J K−1 mol−1 respectively.  相似文献   

8.
Equilibrium phase relations in the system CaO·SiO2Na2O·SiO2Na2O·Al2O3·6SiO2 at 40–80 wt% Na2O·Al2O3·6SiO2 composition range have been experimentally studied at temperatures between 800 °C and 1200 °C. The liquidus temperature was determined with differential scanning calorimetry. The equilibrated samples were quenched with pressurized nitrogen, and examined with electron probe X-ray microanalysis and X-ray diffraction for identification of microstructure and phase relations. Five primary phase fields, CaO·SiO2, Na2O·SiO2, Na2O·2CaO·3SiO2, 2Na2O·CaO·3SiO2 and Na2O·Al2O3·6SiO2 were established. The ternary eutectic point of CaO·SiO2, Na2O·2CaO·3SiO2 and Na2O·Al2O3·6SiO2 was determined to be at 1030 °C with the composition of 29.0 wt% CaO·SiO2, 12.0 wt% Na2O·SiO2 and 59.0 wt% Na2O·Al2O3·6SiO2. Peritectic reaction of Na2O·2CaO·3SiO2, 2Na2O·CaO·3SiO2 and Na2O·Al2O3·6SiO2 occurred at 930 °C with the composition of 13.0 wt% CaO·SiO2, 29.0 wt% Na2O·SiO2 and 58.0 wt% Na2O·Al2O3·6SiO2. The liquidus surface projection of the ternary system has been constructed in the composition region important for the bottom ash application.  相似文献   

9.
《Ceramics International》2016,42(12):13470-13475
This research was aimed to develop a novel multifunctional SiO2–TiO2 composite coating for application in the field of outdoor sandstone conservation. The SiO2–TiO2 composite coating derived from the sol–gel reaction of tetraethoxysilan (TEOS) and tetrabutyl orthotitanate (TBOT). Hydroxyl-terminated polydimethylsiloxane (PDMS-OH) and poly(ethylene oxide)-poly(phenylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, F127) surfactant were added to the SiO2–TiO2 based materials. The contact angle analysis, scanning electron microscopy measurement, stain resistant test, salt crystallization test and outdoor exposure test were conducted to investigate the effectiveness and durability of this composite coating. Results showed that SiO2–TiO2 composite materials created a hydrophobic, crack-free coating with self-cleaning and antibacterial properties on the decayed sandstone surface, allowing their use for practical outdoor sandstone conservation applications.  相似文献   

10.
Ceramics in the system MgO–SiO2–TiO2 were prepared by standard mixed oxide route. By adding ZnO–B2O3 to the starting mixtures, the firing temperature of the ceramics could be reduced to 1160 °C. Small additions of MnCO3 and CaTiO3 improve microwave dielectric properties leading to an increase in insulation resistance and a decrease in temperature coefficient of capacitance. By adding Co2O3 grain growth can be inhibited and the dielectric Qf value greatly increased. The resultant ceramic material exhibited low dielectric constant and low dielectric loss: relative permittivity (εr): 20±2; temperature coefficient of capacitance (τc): 0±30 ppm/°C; Qf: 100,000 (at 10 GHz); insulation resistance: 1013 Ω cm:  相似文献   

11.
For the development of a new wear resistant and chemically stable glass-ceramic glaze, the CaO–ZrO2–SiO2 system was studied. Compositions consisting of CaO, ZrO2, and SiO2 were used for frit, which formed a glass-ceramic under a single stage heat treatment in electric furnace. In the sintered glass-ceramic, wollastonite (CaSiO3) and calcium zirconium silicate (Ca2ZrSi4O12) were crystalline phases composed of surface and internal crystals in the microstructure. The internal crystal formed with nuclei having a composition of Ca1.2Si4.3Zr0.2O8. The CaO–ZrO2–SiO2 system showed good properties in wear and chemical resistance because the Ca2ZrSi4O12 crystals positively affected physical and mechanical properties.  相似文献   

12.
Phase equilibria and liquidus temperatures in the CaO–SiO2–Al2O3–MgO system at a CaO/SiO2 weight ratio of 0.9 in the liquid phase have been experimentally determined employing high-temperature equilibration and quenching technique followed by electron probe X-ray microanalysis. Isotherms at 1573, 1623, 1673, and 1773 K were determined and the primary phase fields of wollastonite, melilite, olivine, periclase, spinel, and corundum have been located. Compositions of the olivine and melilite solid solutions were analyzed and discussed. Comparisons between the newly constructed diagram, existing data, and FactSage predicted phase diagrams were performed and differences were discussed. The present study will be useful for guidance of industrial practices and further development of thermodynamic modeling.  相似文献   

13.
《Ceramics International》2022,48(13):18541-18550
Herein, a multicomponent bioactive glass (0Z, 46SiO2–30CaO–18Na2O–6P2O5, wt.%) is prepared via melting. ZrO2 is introduced into the bioglass using two different methods, and then three types of glass-ceramic bulks are manufactured using low-cost pressureless sintering. The effect of ZrO2 addition on the bioactivity and mechanical properties of the bioactive glass-ceramic is assessed. The results indicate that the main crystalline precipitate from the bioactive glass-ceramic is Na2Ca(Si2O6). The crystallisation ability of the 5Z glass-ceramic, bioactive glass-ceramic with ZrO2 added during melting at high temperature, is reduced because ZrO2 participated in the reconstruction of the glass network. Further, the ZrO2 addition led to a low rate of cation release when soaked in simulated body fluid, indicating a decreased bioactivity. At the same time, the 5Y bioactive glass-ceramic, prepared by mixing YSZ particles with 0Z using ball-milling, possesses not only the highest mechanical strength (about twice the strength of 0Z) but also a high bioactivity. This study presents a promising method for the production of excellent bioactive glass-ceramic and a candidate (5Y) for the clinical applications where load bearing is required.  相似文献   

14.
《Ceramics International》2020,46(4):4322-4328
The objective of this study was to evaluate the effect of ZnO content on the physical, mechanical and chemical properties of CaO–Al2O3–SiO2 (CAS) glass-ceramics produced from Colombian wastes, such as fly ash, granulated blast furnace slag and glass cullet. The CaO/SiO2 molar ratio of the mixtures was held constant (0.36). ZnO was added to the mixtures in proportions of 4, 7 and 10 wt%. The glass-ceramics were produced by the controlled crystallization of a parent glass. The values of crystallization temperature (Tp) show a fall up to 7 wt% and then shoots up with 10 wt% concentration of ZnO, but in general, ZnO addition lowers the temperature required for the formation of crystalline phases. In general, anorthite (CaAl2Si2O8) is the main phase observed in all heat treated samples, in addition to albite (Na(AlSi3O8)) and labradorite (Na0.45 Ca0.55 Al1.55 Si2.45 O8). The crystalline phases hardystonite (Ca2ZnSi2O7) and willemite (Zn2SiO4) were also identified in the samples with 7 and 10 wt% ZnO. The densities of the glass-ceramics were between 2658 and 2848 kg/m3, and it was found that ZnO helps to increase the density of glass-ceramics. The elastic modulus was in the 100–105 GPa range, the fracture toughness was between 0.45 and 0.64 MPa m1/2, and the Vickers microhardness was between 632 and 653 MPa. With regards to the durability, the weight loss of the glass-ceramics immersed in alkaline solution (NaOH) did not exceed 1.5 wt% after immersion for 6 h at 80 °C. The results of this study confirm that the vitrification process is a favorable option to utilize these industrial wastes.  相似文献   

15.
《Ceramics International》2023,49(20):33188-33196
Nowadays, Y2O3–Al2O3–SiO2 (YAS) glass joining is considered to be a promising scheme for nuclear-grade continuous silicon carbide (SiC) fiber reinforced SiC matrix composites (SiC/SiC). CaO has great potential for nuclear applications since it has low reactivity and low decay rate under nuclear irradiation. In this paper, the effect of CaO doping on the structure, thermophysical properties, and crystallization behavior of YAS glass was systematically studied. As the CaO doping content increased, the number of bridge oxygens and the viscosity at high temperatures reduced gradually. After heat treatment at 1400 °C, the main phases in YAS glass were β-Y2Si2O7, mullite, and SiO2 (coexistence of crystalline and glass phases), while that with 3.0% CaO doping turned into a single glassy phase under the same treatment conditions. Moreover, a structural model and the modification mechanism were proposed, which provided a theoretical basis for the subsequent component design and optimization.  相似文献   

16.
《Ceramics International》2022,48(1):556-562
We report the gas sensing properties of a type of new materials, Na1/2Bi1/2TiO3 (NBT)-based ceramics. After the NBT-based ceramics were asymmetrically reduced and coated with Au electrodes, the materials exhibit relatively large electrical responses when exposed to oxygen and some oxidizable gases at a relatively low temperature (≤300 °C). An electric voltage ~60 mV is measured in the mixture of O2 and N2 (1% O2). In oxidizable gases, a negative response can be obtained. The measured voltages are ?45 mV and ?98 mV in the mixtures of H2/air (1000 ppm H2) and C2H5OH/air (1000 ppm C2H5OH), respectively. The electrical responses are proportional to the logarithm of the concentrations of the analyzed gases. Also, the electrical responses to oxygen and oxidizable gases have opposite signs, and the model of mixed-potential is proposed to explain the gas sensing phenomenon. This study provides a new material and a simple design for gas sensors. The proposed gas sensor comprises a reduced NBT-based ceramic wafer with the same electrodes on the opposite surfaces. Additional components in traditional gas sensors, such as sensing or reference electrode, are unnecessary.  相似文献   

17.
《Ceramics International》2020,46(1):493-499
The cofiring process of Au paste containing various amount of glass additive with different properties and CaO–B2O3–SiO2 (CBS) green tapes was investigated. The initial shrinkage temperature of Au paste was strongly associated with the softening point and the content of glass additive. The swell of sample and its mechanism during cofiring process was reported. The sheet resistivity of Au electrode was greatly depended on the content of CBS glass additive. When the content of CBS glass additive with the softening point of 704 °C was 3 wt %, the Au electrode exhibited the highest conductivity with the sheet resistivity of 2.4 mΩ/sq. The results obtained in this paper revealed the relationship between the glass additive and cofiring defects of Au electrode in the metal/ceramic multilayer structure, which gave an avenue to manufacture Low temperature co-fired ceramics (LTCC) modules with good quality.  相似文献   

18.
This study examines the incorporation of TiO2 into sodium borosilicate glasses and its effect on the formation of glassy and crystalline microphases. Glasses in the composition range: 7Na2O–23B2O3–(70 - X)SiO2XTiO2 (where X = 0–14.6 mol.% TiO2) which exhibit phase separation were investigated. Raman studies confirm the formation of two different TiO2 coordinations depending on the molar content of TiO2. Thermal properties of glasses are unaffected by TiO2 addition. The domain size of microphase development in TiO2-containing glass indicates competition between phase separation and crystallization. Enrichment of titanium on the interphase between glassy microphases reduces the mass transfer and consequently limits the growth rate of glassy phases. This competes with the formation of anatase for which a nucleation-controlled mechanism is proposed.  相似文献   

19.
The crystallization process of ternary system SiO2–CaO–MgO (Na2O) was investigated by DTA, XRD and SEM techniques and by strength measurements. The ability of Cr2O3+Fe2O3 as nucleating agents in inducing bulk nucleation via formation of a spinel phase was proved. Wollastonite and diopside are two major phases that were identified after two-stage heat treatment. The spherulitic growth morphology was observed by SEM. At high growth temperatures for long times the recrystallization process was observed too. The kinetic parameters, such as activation energy and Avrami exponent, were calculated by Kissinger equation.  相似文献   

20.
The effects of fluorine content on the nucleation and crystallization behavior of SiO2–Al2O3–CaO glass ceramics system have been investigated. The crystalline phases were determined by X-ray diffraction (XRD). The crystallization kinetics was determined by differential thermal analysis (DTA). The microstructures were examined by using scanning electron microscope (SEM). Fourier transformed infrared spectra (FTIR) analysis was used to study the glass structure. The results showed that by increasing the fluorine content, both the crystallization peak temperature (Tp) and activation energy (E) decreased. Wollastonite, anorthite and gehlenite are the main crystalline phases that exist in the glass ceramics system. The study shows that fluorine promoted initial crystallization of glass and can be used as an effective nucleating agent in the SiO2–Al2O3–CaO system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号