首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective production of specific radical species with prolonged lifetime is challenging in advanced oxidation process. Herein, we constructed single-atom Co (SA-Co) catalytic sites confined in layered double hydroxide (LDH) for selectively and sustainably generate radical species via peroxymonosulfate (PMS) activation. The negatively charged PMS was stabilized by the positively charged LDH and simultaneously activated by the nanoconfined Co single-atom sites, resulting in oriented-production of surface-bonded •OH and SO4•− radicals with long-term efficiency (up to 48 h), suppressed PMS decomposition and radical self-quenching. Ion competition experiments and in-situ spectroscopic studies were applied to monitor the PMS activation processes. The SA-Co-LDH/PMS system outperforms the benchmark homogeneous (Co2+/PMS) and heterogeneous (Co3O4/PMS) catalytic systems for the degradation of emerging organic contaminants (EOCs) with the lowest Co consumption and highest catalytic efficiency.  相似文献   

2.
《Ceramics International》2023,49(4):6164-6176
Niobium pentoxide (Nb2O5) nanoparticles have attracted attention in recent years due to their enhanced adsorption and photocatalysis properties against emerging contaminants. The photocatalytic properties of niobium pentoxide are directly related to defects and non-stoichiometric phases in its structure. This work presents the synthesis of Nb2O5 nanoparticles using the Pechini method and precursor decomposition techniques. X-ray diffraction (XRD) showed the presence of niobium pentoxide crystallized in TT, T, H, and the non-stoichiometric Nb12O29 phases. The samples calcined at 500 °C showed a specific surface area (SSA) between 55 and 65 m2 g?1, acting as a good adsorbent and photocatalyst to degrade crystal violet (CV). The contaminant adsorption process was studied and optimized using zeta-potential analysis, showing a negatively charged surface at pH > 2, with optimal adsorption at pH = 10. The adsorption study showed the best fit for the adsorption isotherm proposed by Liu and also the possibility of reusing Nb2O5. The photodegradation of crystal violet dye using Nb2O5 as catalyst showed synergetic properties, in which samples with higher SSA and crystallization in the TT-phase decolored the solution in 2 h 30 min. However, the mixture of H–Nb2O5 and Nb12O29 also showed good adsorption properties and decolored the CV pollutant in 2 h 30 min, demonstrating that adsorption and photodegradation mechanisms strongly depend on the crystalline phase of the niobium pentoxide.  相似文献   

3.
Two novel inorganic-organic hybrid compounds (Ni3(Hfcz)4(V3O9)2? 2H2O) (1) and Co5(H2O)4(fcz)2(V4O12)2 (2) have been successfully constructed, based on [Ni2(V3O9)2]2? “bow tie” clusters and {Co2V2} pure inorganic cages. Structural analysis reveals that the clusters and cages are expanded to a 2D network and 3D framework via NiII and CoII, respectively. In addition, we investigated the optical band gaps of the two compounds: 2.92 eV and 2.23 eV.  相似文献   

4.
Cobalt oxide (Co3O4) nanocatalyst was synthesized by sol-gel method using the protic ionic liquid namely 1-butylimidazolium glycolate as solvent and stabilizer. The obtained Co3O4 nanocatalyst was characterized by powder X-ray diffraction (XRD), Fourier transform infrared, High resolution scanning electron microscopy (HR-SEM), Energy dispersive X-ray (EDX), High resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction, UV–Visible diffuse reflectance spectroscopy, Photoluminescence spectroscopy, Brunauer–Emmett–Teller surface area and Vibrating sample magnetometer (VSM). Powder XRD results showed the well-crystalline cubic structure of synthesized Co3O4 with size of 19.29 nm. Also, the sphere-like morphology of Co3O4 nanocatalyst was confirmed by HR-SEM and HR-TEM images. Furthermore, the synthesized Co3O4 nanocatalyst possessed optical band gap values of 1.75 and 2.46 eV and hence acted as a semiconducting material. In addition, the presence of small hysteresis loop in Magnetic measurement (VSM) confirmed the ferromagnetic nature of Co3O4 nanoparticles. Moreover, the synthesized Co3O4 nanocatalyst found to be used in photo-catalytic degradation of methylene blue and exhibited 94.61% efficiency.  相似文献   

5.
In this paper, a novel Co3O4 micro-bundles structure (Co3O4 MBs) was obtained at 120 °C after a hydrothermal reaction for 24 h and followed by an annealing treatment at 300 °C in air. The unique Co3O4 MBs are constructed by many adjacent flakes with 0.4 μm in thickness, and exhibit a large surface area of 81.2 m2 g?1 and a mean pore diameter of 6.14 nm, which may facilitate a sufficient contact with electrolyte and then shorten the diffusion pathway of ions. A remarkable electrochemical behavior including specific capacity of 282.3 C g?1 at 1 A g?1 and 205.9 C g?1 at 10 A g?1, and an excellent cycling performance with 74.6% capacity retention after 4000 charge-discharge process at 5 A g?1 are achieved when the test of Co3O4 MBs-modified electrode is performed using three-electrode configuration. Additionally, a hybrid supercapacitor (HSC) was fabricated with the obtained Co3O4 MBs as positive electrode and commercial activated carbon (AC) as negative electrode. The HSC exhibits a specific capacity of 144.1 C g?1 at 1 A g?1 and 126.4% capacity retention after 5000 cycles at 5 A g?1. An energy density of 38.5 W h kg?1 can be obtained at a power density of 962.0 W kg?1, and 29.5 W h kg?1 is still retained at 8532.5 W kg?1. The simple synthetic strategy can be applicable to the synthesis of other transition metal oxides with superior electrochemical performance.  相似文献   

6.
Polychlorinated biphenyls (PCBs) in the environment pose long-term risk to public health because of their persistent and toxic nature. This study investigates the degradation of PCBs using sulfate radical-based advanced oxidation processes (SR-AOPs). These processes are based on the generation of sulfate radicals through iron (Fe(II), Fe(III)) mediated activation of peroxymonosulfate (KHSO5, PMS) or persulfate (Na2S2O8, PS). This study is the first instance for coupling of Fe(II)/Fe(III) with PMS for PCB degradation in aqueous and sediment systems. The high oxidation efficiencies of the free radicals (SO4), in combination with the slow rate of consumption of the oxidants, make these processes very effective for the degradation of recalcitrant organic compounds. The effectiveness of the process was evaluated based on the degradation of a model polychlorinated biphenyl, 2-chlorobiphenyl and total organic carbon (TOC) removal. The kinetics of 2-chlorobiphenyl degradation along with the effect of oxidant and catalyst concentrations on the degradation efficiency was studied. Near complete removal of 2-chlorobiphenyl was observed when Fe(II) was used with PMS or PS. Fe(II) acts as a sulfate radical scavenger at higher concentrations indicating that there is an optimum concentration of Fe(II) that leads to most effective degradation of the target contaminant. A chelating agent, sodium citrate, was used to control the quantity of iron in the solution for activation of the oxidant. For the first time, we studied the feasibility of the activation of PMS using iron citrate complexes for PCB degradation. In the presence of sodium citrate, increase in degradation efficiency was observed up to a metal:ligand ratio of 1:2, after which the increase in citrate concentration led to a decrease in removal efficiency. Fe(II)/PMS systems were found to be very effective in degrading PCB in a sediment-slurry system with more than 90% PCB removal being observed within 24 h.  相似文献   

7.
《Ceramics International》2020,46(15):24137-24146
Tremendous attention has been devoted for the development of highly efficient and stable electrode materials for supercapacitor applications. In this study, Sn-doped Co3O4 nanorods were prepared via solvothermal process using PVP and oxalic acid as surfactants. The phase, morphology and composition of Sn-doped Co3O4 nanorods were examined by XRD and SEM/EDX techniques. The electrochemical properties were studied via cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), electrochemical impedance spectroscopy (EIS) measurements. The CV results show that electrode based on 5 at. % Sn-doped Co3O4 (5Sn-doped Co3O4) nanorods delivered the highest specific capacitance (842.44 F/g) at 5 mV/s than that of the electrode based on pure Co3O4 (729.39 F/g). In order to further tune the performance of this electrode, the structure, morphology and electrochemical behavior of 5Sn-doped Co3O4 sample were optimized via variety of calcination temperatures ranging from 250 to 400 °C. Notably, the 5Sn-doped Co3O4 sample calcined at 350 °C exhibited higher electrochemical performance (specific capacitance ~913.10 F/g) than other samples calcined at low or high calcination temperatures. The CV curves of 5Sn-doped Co3O4/T-350 °C at scan rates of 5–35 mV/s also showed pseudocapacitor behavior and good electrochemical reversibility. Moreover, the prepared novel electrode material has also displayed good rate capability (71.77%) at current density of 1–10 A/g and long-term stability of 92.23% after 3000 cycles. These excellent electrochemical characteristics of 5Sn–Co3O4/T-350 °C nanorods verified that it will be highly suitable electrode material for supercapacitor applications.  相似文献   

8.
《Ceramics International》2022,48(2):1956-1962
A series of (In1-xAlx)2O3 (0.1 ≤ x ≤ 0.6) films with tunable bandgap were grown on MgO (100) substrates by MOCVD. The influences of chemical compositions and growth temperatures on the film properties were studied systematically. XRD analyses indicated that the film quality degraded from crystalline to amorphous structure as Al concentration (x) increased. The (In1-xAlx)2O3 films prepared at 700 °C exhibited better film crystallinity than those of the ones grown at 600 °C. The films prepared at 700 °C with x = 0.1–0.3 showed an epitaxial In2O3 <111> orientation with the corresponding growth relationship of In2O3 (111)∥MgO (100). The film with x = 0.2 exhibited the best crystallinity and the largest grain size of 25.9 nm. The Hall mobilities and resistivities of the films were influenced evidently by Al concentrations. The Hall mobility showed a monotonous decrease from 12 to 1.1 cm2V?1s?1 as x increased from 0.1 to 0.6. The lowest resistivity of 9.2 × 10?3 Ω cm was acquired for the film with x = 0.2. The average transmittances in the visible region for all the films were beyond 83%. The bandgap of the (In1-xAlx)2O3 films can be regulated in the range of 3.85–4.88 eV by changing Al concentrations from 0.1 to 0.6.  相似文献   

9.
《分离科学与技术》2012,47(14):2987-2999
Abstract

Magnetic π‐complexation sorbents were studied for petroleum product desulfurization by fluorescent technique. The ability of metal cation to form π‐complexation decreases in the order following: Cu+>Ni2+>Co2+>Al3+. The order is consistent with that of desulfurization performance of their corresponding magnetic sorbents (γ‐Al2O3‐Cu(I)>γ‐Al2O3‐Ni(II)>γ‐Al2O3‐Co(II)>γ‐Al2O3). Both π‐complexation strength and desulfurization performance of the sorbents increase with temperature. The adsorptive performances of magnetic γ‐Al2O3‐Cu(I) sorbent to different compounds have the following orders: DBT>fluorene, and pyrene>naphthalene>benzene, respectively. In this study, dibenzothiophene (DBT) was used as a model sulphur‐containing compound for desulfurization. The maximal adsorption amount of magnetic γ‐Al2O3‐Cu(I), was 0.362 mmol DBT g?1.  相似文献   

10.
《Ceramics International》2022,48(21):31763-31772
In the current study, pristine and a series of La and Co-doped dysprosium chromite (Dy1-yLayCr1-xCoxO3) nanoparticles have been fabricated via a facile microemulsion technique. The influence of doping was evaluated based on structural, ferroelectric, dielectric, and photocatalytic properties. The prepared nanoparticles were characterized by XRD, SEM, Raman, and UV–Vis techniques. XRD patterns confirm the synthesis of a monophase orthorhombic structure with space group Pbnm with an average crystalline size in the 18–37 nm range. The saturation polarization (Ps), remanence (Pr), and coercivity (Hc) were determined using a hysteresis loop, and it was observed that by increasing the concentration of dopants, the value of Ps and Pr were improved. According to the PL spectra, highly substituted materials had a low recombination rate and higher charge separation (e? - h+), which was ultimately accountable for higher photocatalytic activity. The dielectric loss decreases with frequency and dopant concentration. The photocatalytic activity of Dy1-yLayCr1-xCoxO3 was investigated against Crystal Violet (CV) dye under sunlight irradiation. The Dy1-yLayCr1-xCoxO3 furnished a 70% dye degradation in 90 min, which is attributed to the tunned bandgap and efficient electron-hole pair separation and the photocatalytic activity under visible light making Dy1-yLayCr1-xCoxO3 a promising photocatalyst for dye removal from wastewater.  相似文献   

11.
Non-conventional MgF2 supported V2O5 catalysts with different vanadia contents (2–15 wt.%) were prepared by impregnation (using NH4VO3), characterised and catalytically evaluated for selective ammoxidation of 3-picoline to nicotinonitrile. Oxygen and ammonia chemisorption uptakes increased continuously from 60 to over 600 μmol g?1 and 275 to >750 μmol g?1, respectively, with rise in V2O5 proportion indicating that the redox as well as acidic sites are increasing with increase in V2O5 content. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) analysis revealed endothermic as well as exothermic thermal effects mainly due to liberation of water and ammonia, and also due to structural changes. XRD patterns showed the formation of crystalline V2O5 in the fresh solids having 8 wt.% V2O5 and above and NH4VO3 phase in the spent samples. The conversion of 3-picoline is observed to increase continuously with increase in V2O5 loading. However, the selectivity of nicotinonitrile is found to be independent on conversion of 3-picoline. The catalyst with the highest V2O5 loading (15.7 wt.%) displayed the best activity (X > 90%) and selectivity (S > 95%) compared to all other catalysts of this series. The 3-picoline conversion of 10% at 548 K is increased to almost 100% with rise in temperature to 663 K. Increase in 3-picoline feed rate and NH3: 3-picoline ratio exhibited an inhibiting effect on the conversion, while an increase in air: 3-picoline ratio has no significant influence on the performance.  相似文献   

12.
An alternating conjugated polymer derived from 4,4,9,9-tetra(4-octyloxyphenyl)indaceno[1,2-b:5,6-b′]dithiophene and thieno[3,2-b]thiophene was synthesized by Stille coupling reaction. The copolymer shows extensive absorption from 360 nm to 590 nm with optical band gap of 2.12 eV. The highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy levels of the copolymer, determined by cyclic voltammetry (CV), are about ?5.29 eV and ?3.01 eV, respectively. A field-effect hole mobility of 8.1 × 10?4 cm2/(V s) and an on/off ratio of 2.0 × 103 are obtained in the field-effect transistors based on the copolymer. The Jsc, Voc and FF of the polymer photovoltaic cells (PVCs) based on the copolymer were enhanced simultaneously via the inserting of alcohol soluble conjugated polymer interlayer between active layer and metal cathode, and the maximal power conversion efficiency of 4.19% was achieved in the modified devices under an AM 1.5 simulator (100 mWcm?2).  相似文献   

13.
Metal oxide nanoparticles and their composites with conducting polymers, specifically Polyaniline (PANI) were utilized for fabricating nanoscale supercapacitor (SC) electrode materials. In the present study, we have synthesized pristine Pr2O3, NiO, Co3O4 nanoparticles, binary PANI-Pr2O3, PANI-NiO, PANI-Co3O4, ternary Pr2O3–NiO–Co3O4, and quaternary PANI-Pr2O3–NiO–Co3O4 spherical core-shell nanocomposite using co-precipitation and ultra-sonication methods. The grown samples were characterized with different analytical techniques. The XRD pattern revealed that the as-synthesized products were crystalline with Pr2O3 hexagonal phase, NiO cubic phase, and Co3O4 cubic phase in pure and nanocomposites. The Williamson-Hall, Scherrer, and size-strain plot methods were employed to study the crystalline development and contribution of micro-strain. FTIR pattern exhibited the metal-oxygen and PANI bond vibrations. FE-SEM images shown the spherical core-shell shape morphology of quaternary nanocomposite. EDX evident the presence of praseodymium, cobalt, and nickel in synthesized samples. UV–vis spectroscopy confirmed the absorption in the visible region. The IV graphs showed a higher conductivity of quaternary nanocomposite. The cyclic voltammetry results revealed that the quaternary nanocomposite has a higher specific capacitance 500 Fg-1 as compared to binary nanocomposites 134 F g?1 (PANI-Pr2O3), 143 F g?1 (PANI-Co3O4), 256 F g?1 (PANI-NiO), and PANI (90.8 F g?1) at a scan rate of 5 m Vs?1. The GCD results also showed that the quaternary nanocomposite has a higher specific capacitance of 905 F g?1 at current density 1 A g?1 with maximum energy density and power density of 87.99 kWhkg-1 and 2.6 k W kg?1, respectively. The EIS curve also confirmed that the quaternary nanocomposite has a lower polarization resistance (Rp) and solution resistance (Rs). The higher capacitance of quaternary nanocomposite can facilitate ion transfer, and the formation of its core-shell structure flourish to enhance surface-dependent electrochemical properties. Furthermore, this study gives a novel research idea to manufacture electrode materials for supercapacitors.  相似文献   

14.
Nanocrystalline Ca2.76Cu0.24Co4O9 powders (25 nm in crystallite size) are synthesized by the solution combustion method, using aspartic acid as the combustion fuel. In this study, we discuss the effect of sintering temperature on the microstructure and thermoelectric properties of Ca2.76Cu0.24Co4O9. The density and grain size increase with an increase in sintering temperature. The Ca2.76Cu0.24Co4O9 sintered at 900 °C shows the largest value of electrical conductivity and Seebeck coefficient, resulting in the largest power factor (3.8×10?4 W m?1 K?2 at 800 °C). This value is more than 22 times larger than that of the Ca2.76Cu0.24Co4O9 sintered at 940 °C (1.7×10?5 W m?1 K?2 at 800 °C).  相似文献   

15.
Due to the limitations of single material, the oxygen reduction kinetics may be slow, which is considered as a key challenge for developing the high-performance cathodes. In this work, an effective strategy is proposed, employing the in-situ solvothermal method, in which the LSCF, one of the most promising cathode materials, is decorated with Co3O4. After being treated at 180 °C in a neutral solution, the Rp of N-?Co3O4 @LSCF electrode is decreased by 37%, exhibiting reasonable stability for 120 h. Utilizing the DRT technique, finding the decorated Co3O4 mainly promotes the charge transfer and oxygen dissociation processes. The single cell with the N-?Co3O4 @LSCF cathode achieves a maximum power density of 803 mW cm-?2 at 750 °C, which is 25% higher than that for the untreated LSCF electrode. Our work demonstrates that such Co3O4 decorated composite obtained by the in-situ solvothermal treatment is a promising cathode material for solid oxide fuel cells.  相似文献   

16.
In the present investigation, La1-xCoxCr1-yFeyO3 (x,y = 0.0, 0.12, 0.36, 0.60) perovskite was fabricated via a facile micro-emulsion route. The synthesized perovskites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques to examine the effect of Co and Fe ions on the physico-chemical properties. The ferroelectric, dielectric, and magnetic properties of La1-xCoxCr1-yFeyO3 were changed significantly as a function of dopants contents (Co and Fe ions). Outcomes revealed that the dielectric, ferroelectric and magnetic properties of LaCrO3 perovskite can be tuned significantly via Co and Fe doping and La0.40Co0.60Cr0.40Fe0.60O3 have potential for photocatalytic dye removal under (visible) light expoure. The photocatalytic activity (PCA) of the pristine LaCrO3 and La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst was evaluated under (visible) light irradiation for crystal violet (CV) dye. Experimental results revealed that La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst degrdae almost 77.21% CV dye with the rate constant value of 0.01475 min?1. In the presence of isopropyl alcohol (IPA) scavenger, the PCA of the La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst and rate constant value of the photocatalytic reaction decreased to 32.5% and 0.00491 min?1, suggesting the superoxide as main active specie. Results revealed that Co and Fe doping doped material is efficient for photocatalytic presentations under solar light expoure.  相似文献   

17.
《Ceramics International》2023,49(6):9657-9671
Photocatalytic degradation by visible light-driven generation of reactive oxygen species shows great promise for purification of environmental water. However, such degradation is limited by the low separation efficiency of photogenerated carriers and the poor adsorption capacity of the photocatalyst itself. To solve these problems, we successfully constructed and prepared a composite hydrogel (BV-GH) combining a three-dimensional network structure composed of graphene oxide and BiVO4 to achieve the synergistic effects of adsorption enrichment and photocatalytic degradation. The results show that the amount of methylene blue and methyl orange adsorbed by BV-GH is 258.78 mg g?1 and 217.16 mg g?1, respectively, which is much higher than that obtained for pure BiVO4. Due to the synergistic effect of adsorption enrichment and photocatalytic degradation, the degradation rate of the dye by BV-GH reaches 94.18% in 60 min, which is 6.98 times higher than that obtained for pure BiVO4. Electron spin-resonance (ESR) experiments confirm that the main factor affecting the dye degradation by BV-GH is the ability to produce more ·OH and ·O2?, which is an important reason for the excellent antibacterial performance of BV-GH against E. coli. This work can provide further inspiration for photocatalytic technology in water purification.  相似文献   

18.
Powders of spinel Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were successfully synthesized by solid-state method. The structure and properties of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were examined by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electronic microscope (SEM), galvanostatic charge–discharge test and cyclic voltammetry (CV). XRD shows that the V5+ can partially replace Ti4+ and Li+ in the spinel and the doping V5+ ion does almost not affect the lattice parameter of Li4Ti5O12. Raman spectra indicate that the Raman bands corresponding to the Li–O and Ti–O vibrations have a blue shift due to the doping vanadium ions, respectively. SEM exhibits that Li4Ti5−xVxO12 (0.05 ≤ x ≤ 0.25) samples have a relative uniform morphology with narrow size distribution. Charge–discharge test reveals that Li4Ti4.95V0.05O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 1.0 and 2.0 V; Li4Ti4.9V0.1O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 0.0 and 2.0 V or between 0.5 and 2.0 V. This excellent cycling capability is mainly due to the doping vanadium. CV reveals that electrolyte starts to decompose irreversibly below 1.0 V, and SEI film of Li4Ti5O12 was formed at 0.7 V in the first discharge process; the Li4Ti4.9V0.1O12 sample has a good reversibility and its structure is very advantageous for the transportation of lithium-ions.  相似文献   

19.
Non-peripherally substituted cobalt 1,(4)-(tetraphenylthiophthalocyaninato) and peripherally substituted cobalt 2,(3)-(tetraphenylthiophthalocyaninato) complexes were synthesized. Redox processes were observed at E1/2 = ?1.44 V (I), ?0.39 V (II), +0.37 V (III), +0.78 V (IV) and 1.15 V (V) for the non-peripherally substituted and at E1/2 = ?1.42 V (I), ?0.57, ?0.39 V (II), +0.27 V (III), +0.79 V (IV) and +1.10 V (V) for the peripherally substituted complexes, respectively. The couples were assigned to CoIPc?2/CoIPc?3 (I), CoIIPc?2/CoIPc?2 (II), CoIIIPc?2/CoIIPc?2 (III), and CoIIIPc?1/CoIIIPc?2 (IV) using spectroelectrochemistry. The last process (V) could not be ascertained by spectroelectrochemistry but is associated with ring oxidation. Upon reduction or oxidation, the Q band of the non-peripherally substituted complex became less red shifted compared to that of its peripherally substituted counterpart.  相似文献   

20.
《Ceramics International》2021,47(19):27210-27216
A composite of Co3O4/holey graphene (Co3O4/HG) was prepared via a facile hydrothermal route, and was then processed into an electrode by an electrophoretic deposition process. Holey graphene (HG) wrapped Co3O4 to form a 3D skeleton network, thereby providing high electrical conductivity, and the holes in HG could further shorten the electrolyte ion diffusion pathway. Therefore, by adjusting the mass ratio of Co3O4 to HG, the Co3O4/HG composite afforded an enhanced capacitance of 2714 F g−1 (at a current density of 1 A g−1), which is 20 times higher than that of pure Co3O4. To further explore the practical applications of Co3O4/HG, a symmetric supercapacitor employing Co3O4/HG was fabricated. The supercapacitor functioned stably at potentials up to 1.2 V, with an enhanced energy density of 165 Wh kg−1 and a high power density of 0.6 kW kg−1 at 1 A g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号