首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an experimental study of the load bearing behavior of geosynthetic reinforced soil (GRS) bridge abutments constructed on yielding clay foundation. The effects of two different ground improvement methods for the yielding clay foundation, including reinforced soil foundation and stone column foundation, were evaluated. The clay foundation was prepared using kaolin and consolidated to reach desired shear strength. The 1/5-scale GRS abutment models with a height of 0.8 m were constructed using sand backfill, geogrid reinforcement, and modular block facing. For the GRS abutments on three different yielding foundations, the reinforced soil zone had relatively uniform settlement and behaved like a composite due to the higher stiffness than the foundation layers. The wall facing moved outward with significant movements near the bottom of facing, and the foundation soil in front of facing showed obvious uplifting movements. The vertical stresses transferred from the footing load within the GRS abutment and on the foundation soil are higher for stiffer foundation. The improvement of foundation soil using geosynthetic reinforced soil and stone columns could reduce the deformations of GRS abutments on yielding foundation. Results from this study provide insights on the practical applications of GRS abutments on yielding foundation.  相似文献   

2.
This paper presents a numerical study of maximum reinforcement tensile forces for geosynthetic reinforced soil (GRS) bridge abutments. The backfill soil was characterized using a nonlinear elasto-plastic constitutive model that incorporates a hyperbolic stress-strain relationship with strain softening behavior and the Mohr-Coulomb failure criterion. The geogrid reinforcement was characterized using a hyperbolic load-strain-time constitutive model. The GRS bridge abutments were numerically constructed in stages, including soil compaction effects, and then loaded in stages to the service load condition (i.e., applied vertical stress?=?200?kPa) and finally to the failure condition (i.e., vertical strain?=?5%). A parametric study was conducted to investigate the effects of geogrid reinforcement, backfill soil, and abutment geometry on reinforcement tensile forces at the service load condition and failure condition. Results indicate that reinforcement vertical spacing and backfill soil friction angle have the most significant effects on magnitudes of maximum tensile forces at the service load condition. The locus of maximum tensile forces at the failure condition was found to be Y-shaped. Geogrid reinforcement parameters have little effect on the Y-shaped locus of the maximum tensile forces when no secondary reinforcement layers are included, backfill soil shear strength parameters have moderate effects, and abutment geometry parameters have significant effects.  相似文献   

3.
A 2-D finite flement model was developed in this study to conduct a FE parametric study on the effects of some variables in the performance of geosynthetic reinforced soil integrated bridge system (GRS-IBS). The variables investigated in this study include the effect of internal friction angle of backfill material, width of reinforced soil foundation (RSF), secondary reinforcement within bearing bed, setback distance, bearing width and length of reinforcement. Other important parameters such as reinforcement stiffness and spacing were previously investgated by the authors. The performance of GRS-IBS were investgated in terms of lateral facing displacement, strain distribution along reinforcement, and location of potential failure zone. The results showed that the internal friction angle of backfill material has a significant impact on the performance of GRS-IBS. The secondary reinforcement, setback distance, and bearing width have low impact on the performance of GRS-IBS. However, it was found that the width of RSF and length of reinforcement have negligible effect on the performance of GRS-IBS. Finally, the potential failure envelope of the GRS-IBS abutment was found to be a combination of punching shear failure envelope (top) that starts under the inner edge of strip footing and extends vertically downward to intersect with Rankine active failure envelope (bottom).  相似文献   

4.
Geosynthetic reinforced soil integrated bridge system (GRS-IBS) design guidelines recommend the use of a reinforced soil foundation (RSF) to support the dead loads that are applied by the reinforced soil abutment and bridge superstructure, as well as any live loads that are applied by traffic on the bridge or abutment. The RSF is composed of high-quality granular fill material that is compacted and encapsulated within a geotextile fabric. Current GRS-IBS interim implementation design guidelines recommend the use of design methodologies for bearing capacity that are based around rigid foundation behavior, which yield a trapezoidal applied pressure distribution that is converted to a uniform applied pressure that acts over a reduced footing width for purposes of analysis. Recommended methods for determining the applied pressure distribution beneath the RSF for settlement analyses follow conventional methodologies for assessing the settlement of spread footings, which typically assume uniformly applied pressures beneath the base of the foundation that are distributed to the underlying soil layers in a fashion that can reasonably be modeled with an elastic-theory approach. Field data collected from an instrumented GRS-IBS that was constructed over a fine-grained soil foundation indicates that the RSF actually behaves in a fairly flexible way under load, yielding an applied pressure distribution that is not uniform or trapezoidal, and which is significantly different than what conventional GRS-IBS design methodologies assume. This paper consequently presents an empirical approach to determining the applied pressure distribution beneath the RSF in GRS-IBS construction. This empirical approach is a useful first step for researchers, as it draws important attention to this issue, and provides a framework for collecting meaningful field data on future projects which accurately capture real GRS-IBS foundation behavior.  相似文献   

5.
Although the use of Geosynthetic Reinforced Soil (GRS) bridge abutments has been increasing, the seismic performance of such structures has remained a significant concern due to their unknown behavior in load-bearing and stress distribution under bridge load and seismic conditions simultaneously. This paper investigates the static and dynamic response of GRS bridge abutment. A series of numerical models representing the realistic field conditions of these structures, including two reinforced soil walls and a single span deck that restrains the top of walls, rather than equivalent surcharge load, was developed. The calibrated numerical model in FLAC program was used to evaluate the effects of horizontal restraint from the deck on the GRS wall displacements and reinforcement loads at the end of construction and under harmonic base acceleration up to 0.5 g. Results indicated that the restraint mobilized from the bridge deck presence, considerably affected the results at both the end of construction and after the dynamic load was applied. Moreover, a series of the parametric studies were performed to investigate the influences of backfill soil relative compaction, reinforcement stiffness, reinforcement length, and reinforcement vertical spacing on the response of GRS abutments at the end of construction and post dynamic state.  相似文献   

6.
The paper reports the construction and surcharge load-testing of three (3) large-scale (~2.50 m-tall) GRS bridge abutment models in an outdoor test station to investigate the influences that the facing type and reinforcement spacing could have on their load-bearing performance. The facing types examined included cored Concrete Masonry Units (CMU) in Model #1 and much larger solid concrete blocks in Models #2 and #3. Reinforcement spacing in the first two models was 0.20 m, whereas it was increased to 0.30 m in the third model. Results show that using large facing blocks in GRS abutments could lead to significant improvements in their load-deformation performance relative to those with the CMU facing alternative. This improvement was observed even in the case of model with increased reinforcement spacing. Therefore, use of larger facing blocks could also help reduce the cost of GRS abutments by reducing the need for tighter reinforcement.  相似文献   

7.
This paper presents the results of a finite element (FE) numerical analysis that was developed to simulate the fully-instrumented Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) at the Maree Michel Bridge in Louisiana. Four different loading conditions were considered in this paper to evaluate the performance of GRS-IBS abutment due to dead loading, tandem axle truck loading, service loading, and abnormal loading. The two-dimensional FE computer program PLAXIS 2D 2016 was selected to model the GRS-IBS abutment. The hardening soil model proposed by Schanz et al., (1999) that was initially introduced by Duncan and Chang (1970) was used to simulate the granular backfill materials; a linear-elastic model with Mohr-Coulomb frictional criterion was used to simulate the interface between the geosynthetic and backfill material. Both the geosynthetic and the facing block were modeled using linear elastic model. The Mohr-Coulomb constitutive model was used to simulate the foundation soil. The FE numerical results were compared with the field measurements of monitoring program, in which a good agreement was obtained between the FE numerical results and the field measurements. The range of maximum reinforcement strain was between 0.4% and 1.5%, depending on the location of the reinforcement layer and the loading condition. The maximum lateral deformation at the face was between 2 and 9 mm (0.08%–0.4% lateral strain), depending on the loading condition. The maximum settlement of the GRS-IBS under service loading was 10 mm (0.3% vertical strain), which is about two times the field measurements (~5 mm). This is most probably due to the behavior of over consolidated soil caused by the old bridge. The axial reinforcement force predicted by FHWA (Adams et al., 2011b) design methods were 1.5–2.5 times higher than those predicted by the FE analysis and the field measurements, depending on the loading condition and reinforcement location. However, the interface shear strength between the reinforcement and the backfill materials predicted by Mohr-Coulomb method was very close to those predicted by the FE.  相似文献   

8.
The level of reinforcement loads in a reinforced soil retaining wall is important to its satisfactory operation under working stress conditions since it basically determines the wall deformation. Consequently, proper estimation of the reinforcement load is a necessary step in the service limit-state design of this type of earth retaining structures. In this study, a force equilibrium approach is proposed to quantify the influence of facing batter on the reinforcement loads of reinforced soil walls under working stress conditions. The approach is then combined with a nonlinear elastic approach for GRS walls without batter to estimate the reinforcement loads neglecting toe restraint. The approximate average mobilized soil strength in the retaining wall is employed in the force equilibrium analysis. The predictions of reinforcement loads by the proposed method were compared to the experimental results from four large-scale tests. It is shown that the proposed semianalytical approach has the capacity to reproduce the reinforcement loads with acceptable accuracy. Some remaining issues are also pinpointed.  相似文献   

9.
张垭  汪磊  刘华北 《岩土工程学报》2017,39(9):1680-1688
土工合成材料加筋土挡墙具有良好的力学性能和优越的经济性等优点,在国内外得到了越来越广泛的应用。然而,众多加筋土挡墙的试验数据表明,对加筋土挡墙受力机理的理论研究是滞后于工程建设实践的。针对筋材内力计算这一重要问题,研究了面板倾角对加筋土挡墙筋材内力的影响。首先,以RMC试验挡墙为原型,验证了数值模拟方法的有效性;然后,利用数值模拟方法,分析了不同工况下,加筋土挡墙内竖向土压力和筋材应变随着面板倾角增大的变化趋势。数值模拟结果表明,筋材内力随着加筋土挡墙面板倾角的增大而降低。在数值研究结果的基础上,从潜在滑动面附近土单元应力状态及滑动楔形体的平衡两个方面分析了面板倾角的作用机理,定位了填土竖向土压力以及面板基底水平摩擦阻力两个影响筋材内力的关键因素。  相似文献   

10.
This paper presents the results of a full-scale load test and a 3D finite element analysis on a two-tier, 5 m high, geosynthetic reinforced segmental retaining wall (GR-SRW) subjected to a surcharge load aiming at investigating the response of the GR-SRW to various levels of surcharge load. The results of the load test at working stress condition revealed that the GR-SRW's response to the test load was well within the serviceability limits, and that the currently available design guideline tends to over-estimate the surcharge load-induced reinforcement forces. The predicted results for the surcharge load well in excess of the test load indicated that the surcharge load-induced reinforcement strains exponentially decrease with depth, showing a good agreement in qualitative terms with that assumed in the FHWA design guideline. The predicted wall deformation at the allowable bearing pressure of 200 kPa was within the serviceability level demonstrating an excellent load carrying capacity of the GR-SRW. Design implications and the findings from this study are discussed.  相似文献   

11.
基于静载作用下加筋土柔性桥台结构工作性能的试验研究,综合对比分析桥台基础距下部挡墙面板的距离D对柔性桥台结构极限承载力、下部挡墙变形特点、筋材应变和土压力的影响。试验结果表明:当下部加筋挡墙中筋材长度为整体桥台高度时,桥台结构极限承载力随偏移距离D增加呈现先增加后减小趋势,且在D为0.4HL(HL为下部挡墙高度)时达到最大值;加筋柔性桥台整体结构加载至破坏前一级载荷时,桥台基础沉降与台背加筋土顶部沉降均呈近似线性变化,且D/HL为0.4时二者差异沉降最小;挡墙面板顶部的水平位移明显大于中、底部,且挡墙水平位移与挡墙高度比值均小于1%;挡墙中各层筋材应变最大值随D增加而逐渐向远离面板方向发展,且D为0.4HL时台背加筋土和下部挡墙加筋中筋材的应变相差不大,整体柔性桥台结构工作性能达到最佳状态。  相似文献   

12.
Geosynthetic-reinforced soil (GRS) walls using marginal soils can operate under unsaturated conditions depending on climate conditions and drainage inside the reinforced zone. Geocomposite reinforcements have been suggested to act as internal drainage layers, but their hydraulic behavior can also be strongly affected by climate conditions. Numerical analyses were conducted to observe the impact of four distinct tropical climate conditions (arid, semi-arid, humid subtropical and humid tropical) on suction profiles and stability of reinforced soil walls constructed using geogrid and geocomposite reinforcements. The climate simulation involved the incorporation of a soil-atmosphere interaction on water balance and on the unsaturated transient infiltration. Results indicate the GRS walls can operate under relatively high suction levels under arid climates in which cumulative evaporation overcomes infiltration. Any climate that has rainy seasons with consecutive rainfalls with intensities close to the infiltration capacity of soil and/or monthly cumulative precipitation higher than 200 mm/day led to critical conditions in terms of soil water saturation and stability. Under unsaturated conditions of soil, the drainage effectiveness of geocomposites is significantly reduced and adverse capillary break effects become critical.  相似文献   

13.
Experimental studies have been carried out to evaluate the effect of the compaction condition at the back of block facing on the behavior of geosynthetic reinforced soil (GRS) walls. Three GRS walls with 1.2?m high were constructed at the COPPE/UFRJ Geotechnical Laboratory. The walls were well-instrumented in order to monitor the values of the reinforcement load, toe horizontal load, horizontal facing displacement, horizontal stress at the back of the block facing, and vertical displacement on the top of the walls. The behavior of the walls has been investigated at the end of construction and during the surcharge application (post-construction). At the end of the loading, the toes of the walls were gradually released to also verify the influence of the different toe restraints. The results clearly show the effect and call attention to the importance of the compaction conditions near the facing on the behavior of GRS walls.  相似文献   

14.
15.
Water or soil filled geotextile or geosynthetic tubes have been used for coastal or river protection projects in recent years. How to design and analyze geosynthetic tube is still an important research topic. Although a number of solutions for geosynthetic tube have been proposed in the past, most of these solutions assume that the geosynthetic tube is resting on a rigid foundation. In this paper, a two-dimensional analysis of geosynthetic tube resting on deformable foundation soil is presented. The deformable foundation is assumed to be an elastic Winkler type represented by the modulus of subgrade reaction, Kf. The study shows that the smaller the modulus, the smaller the height of the geosynthetic tube above the ground surface and the higher the tensile force in the geotextile or geosynthetic given the other conditions the same. When the foundation soil has a modulus higher than 1000 kPa/m which is representative of soft clay, the foundation soil can be assumed to be rigid in the analysis. The results obtained from the method proposed in this paper are compared with those from the solutions of Leshchinsky et al. and Plaut and Suherman for verification. The differences between the solutions are also discussed.  相似文献   

16.
加筋膨胀土挡墙承载力研究   总被引:1,自引:0,他引:1  
许岩 《山西建筑》2011,37(24):67-69
采用非饱和土理论推导了在特定条件下加筋膨胀土挡土墙的承载力公式,并以室内模型试验为例进行了验证,说明了该推导公式具有一定的参考价值,为治理膨胀土问题提供了一种新的途径。  相似文献   

17.
纤维加筋土的动力特性试验研究   总被引:7,自引:1,他引:7       下载免费PDF全文
研究用聚丙烯纤维加筋粘性土抵抗静动荷载作用下土体发生张拉裂缝的功能。试验研究结果表明,纤维加筋土的静动力抗张拉、抗断裂性质,诸如极限拉应力、极限技应变、动强度、动模量、临界断裂韧度等,与素土相比都有很大的提高。由此说明纤维加筋粘性土是一种比较理想的土坝防渗抗震填料。  相似文献   

18.
陈福全  李阿池 《岩土工程学报》2007,29(12):1804-1808
具有深厚软土层的路堤若采用桩承加筋式复合地基,可提高地基承载力,减少路堤不均匀沉降,也可布置成疏桩,降低工程成本,在国内外得到越来越广泛的应用,但还没有可靠实用的设计计算方法,且现有的设计均忽略了桩间土的承载作用,这与工程实际有很大差别。基于三维土拱效应,改进Hewlett土拱效应算法,得到桩承式路堤的桩土荷载分担比,进而考虑加筋体影响以及桩间土承载作用,推导桩土应力比计算式,并将此式应用于路堤的设计。  相似文献   

19.
This paper reports numerical modeling of the prototype geosynthetic reinforced soil (GRS) walls corresponding to four centrifuge models that have different toe restraint conditions. The development of the interface stresses and displacements at wall toe during wall construction is investigated to understand how the toe carries load in the GRS walls with a practical toe structure. The numerical results show good agreement with the data from the centrifuge modeling. For the GRS walls with a leveling pad embedded in foundation soil, the shear resistance at the facing block-leveling pad interface acts as the toe resistance to counterbalance a portion of horizontal earth load, while the leveling pad-foundation soil interface play no role in wall performance because the soil passive resistance in front of the leveling pad inhibits the development of the shear stress and displacement on this interface. For the GRS walls with an exposed leveling pad, it is the leveling pad-foundation soil interface that works for carrying the earth load because the wall is more likely to slide along this weaker interface. The contribution of the toe to load capacity depends on the shear strength of the effective toe interface that contributes to the resistance against the earth load.  相似文献   

20.
As people migrate to densely populated cities, the importance of establishing a new transportation infrastructure to meet their needs becomes increasingly critical. The limited space available for construction makes a narrow geosynthetic reinforced soil (GRS) wall a cost-effective alternative. Prior research has primarily examined the performance of narrow GRS walls under static loads, revealing that these structures are highly vulnerable to significant crest displacements. Consequently, multiple studies have recommended incorporating mechanical connections in the upper layer during the construction of narrow GRS walls. However, some places are more susceptible to earthquakes; hence, this research was conducted to investigate the dynamic response of narrow GRS walls and quantify the effect of mechanical connections on increasing the stability of narrow GRS walls. Two sets of narrow GRS wall models were constructed, with and without mechanical connections to a stable wall, and subjected to a similar series of earthquakes. The test results indicate that the mechanical connection can reduce the accumulated normalized horizontal displacement of narrow GRS walls by 30–80% after being subjected to the same dynamic input motion excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号