首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the Metal-rich phase Chromium Aluminum (CrAl)/Ceramic phase Chromium Aluminum Nitride (CrAlN) multi-layer coatings were prepared by Arc Ion Plating (AIP). The micro-structure and phase composition of CrAl/CrAlN multi-layer coatings were characterized, and the microstructure, mechanical properties, residual stress and fracture toughness of the coating were emphatically analyzed. It has been found out that the residual stress of the multi-layer coating was only ?0.932 ± 0.065 GPa, which was significantly lower than that of the mono-layer coating for ?1.569 ± 0.093 GPa. At the same time, it was also found that the preferred growth orientation of the coating changed from a mono-layer (111) to a multi-layer (200) crystal plane. The hardness of the multi-layer (22.74 ± 0.57 GPa) is slightly lower than that of the mono-layer (24.92 ± 0.5 GPa), and the adhesion strength (46.2 ± 3.8 N) is obviously higher than that of the mono-layer (37.4 ± 2.4 N), and the fracture toughness is also higher (8.7 ± 0.8 MPa m1/2). In addition, the mechanism of crack initiation and propagation in stress-induced coatings was studied in detail on the basis of the structure of micro-nano CrAl/CrAlN multi-layer coatings.  相似文献   

2.
In this study, the Ti-6Al-4V substrate was coated by CrN-CrN/TiN-TiN and CrN/CrAlN multilayer coatings using the cathodic arc physical vapor deposition (Arc-PVD) method. The results of potentiodynamic polarization (PDP) have shown the lowest and highest corrosion current density belong to the double-layer (0.16 µA/Cm2) and TiN (0.51 µA/Cm2) samples, indicating the higher corrosion resistance of the double-layer coating. The field emission electron microscope (FESEM), X-ray diffraction pattern (XRD), open circuit potential (OCP), PDP, and electrochemical impedance spectroscopy (EIS) analysis were employed in order to characterize the coatings and evaluate their corrosion behavior. Finally, applying the double-layer coating resulted in the significant improvement of the protective behavior of the Ti-6Al-4V alloy, as compared to the sample coated with TiN in corrosive environments.  相似文献   

3.
The aim of the present work is to study the CrN single-layer coating and the Cr/CrN nanolayered coating by cathodic arc evaporation physical vapor deposition (CAE-PVD) on AISI 304 stainless steel and to assess the electrochemical behavior of the coatings. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were utilized to study the morphology and microstructure of the coatings. The mechanical behavior of the coatings was studied by the nanoindentation technique. The electrochemical behavior of the formed coatings in 3.5 wt.% NaCl solution was investigated via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) tests. Based on the microscopic images, it was realized that both CrN and Cr/CrN coatings were formed having a dense structure on the substrate. The results of EIS measurements showed gradual changes in the polarization resistance of the Cr/CrN nanolayered coating during the immersion time. However, significant changes in the polarization resistance of the CrN single-layer coating were seen by increasing immersion time comparing with the Cr/CrN coating. The higher polarization resistance of the Cr/CrN coating can be attributed to the effects of the interface between the layers in comparison to the CrN coating.  相似文献   

4.
In this study, Al2O3/CrAlSiN multilayer coatings with various periods were prepared using a hybrid process involving overlapping magnetron sputtering of CrAlSiN and atomic layer deposition (ALD) of Al2O3. The influence of the number of Al2O3 layers on the mechanical properties, corrosion behavior and oxidation characteristics of the coatings was studied using nano/micro indentation, electrochemical corrosion, and high temperature static oxidation tests. The results show that the multilayer structure can effectively prevent crack propagation during the coating and subsequently increase the coating toughness. A substantial improvement in the resistance to electrochemical and oxidation corrosion was observed in the Al2O3/CrAlSiN multilayer coatings and increasing the number of Al2O3 layers dramatically increases the corrosion durability. The Al2O3 ALD layers are expected to inhibit the diffusion of corrosive substances such as ions and oxygen and the increase of the Al2O3 layer number decreases the diffusion fluxes of the coating elements to the surface and limit the oxide growth, resulting in the evolution of the oxidation produces from irregular particles to nano-walls/fibers. It is supposed that the PVD/ALD hybrid process may open a new hard coating design concept by providing a superior toughness and corrosion/oxidation resistance.  相似文献   

5.
Comprehensive understanding of failure mechanism of thermal barrier coatings (TBCs) is essential to develop the next generation advanced TBCs with longer lifetime. In this study, a novel numerical model coupling crack propagation and thermally grown oxide (TGO) growth is developed. The residual stresses induced in the top coat (TC) and in the TGO are calculated during thermal cycling. The stresses in the TC are used to calculate strain energy release rates (SERRs) for in-plane cracking above the valley of undulation. The overall dynamic failure process, including successive crack propagation, coalescence and spalling, is examined using extended finite element method (XFEM). The results show that the tensile stress in the TC increases continuously with an increase in an undulation amplitude. The SERRs for TC cracks accumulate with cycling, resulting in the propagation of crack toward the TC/TGO interface. The TGO cracks nucleate at the peak of the TGO/bond coat (BC) interface and propagate toward the flank region of the TC/TGO interface. Both TC cracks and TGO cracks successively propagate and finally linkup leading to coating spallation. The propagation and coalescence behavior of cracks predicted by this model are in accordance with the experiment observations. Therefore, this study proposed coating optimization methods towards advanced TBCs with prolonged thermal cyclic lifetime.  相似文献   

6.
The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (Rp) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (Rpore), the charge transfer resistance (Rct), the coating capacitance (Qcoat) and the double layer capacitance (Qdl) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher Rpore and Rct values as compared to the single layer coatings. Similarly, the Qcoat and Qdl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under scanning electron microscopy.  相似文献   

7.
以马来酸酐接枝无规共聚聚丙烯(PPR-g-MAH)为相容剂,采用熔融插层法制备了无规共聚聚丙烯(PPR)/有机蒙脱土(OMMT)纳米复合材料,通过对PPR/OMMT纳米复合材料的基本断裂功(EWF)的表征,并结合它们的拉伸性能和冲击强度的测试分析,探讨了PPR/OMMT纳米复合材料的断裂机理和塑性变形机理,以及OMMT用量对PPR断裂强度和拉伸强度的影响;SEM观察揭示了OMMT在PPR基体中的分散性程度随含量的增加变差。结果表明:在PPR-g-MAH的作用下OMMT能有效提高PPR/OMMT的拉伸强度,OMMT质量分数低于4%时,PPR/OMMT纳米复合材料的冲击强度(Gc)、比基本断裂功(we)和塑性变形能力均得到提高。PPR/OMMT纳米复合材料的we和Gc具有相似的变化趋势,且Gc总是大于we。  相似文献   

8.
PP/POE共混物的形态和性能的研究   总被引:6,自引:0,他引:6  
采用聚烯烃弹性体(POE)对聚丙烯(PP)进行增韧改性,研究了共混物的力学性能、热性能、断裂功和微观形态。结果表明:POE在PP基体中分散均匀,与基体树脂结合良好;随POE用量的增加,弹性体粒子尺寸不变仅数量增多;POE不仅可以提高材料的冲击韧性也可提高其断裂韧性;POE的加入使材料的软化点略有下降,对加工性能的影响较小。  相似文献   

9.
《Ceramics International》2017,43(2):1830-1838
Ti(C,N)/TiAlSiN multilayer coating was deposited on GTD450 using the Cathodic Arc PVD method to protect compressor blades from erosion damage. The fracture and deformation mechanisms of coating were investigated. To better observe fracture and deformation events and thus the need to apply high loads, Vickers microhardness test was performed and imprint diagonals were measured. Then, using SEM analysis, indent surfaces were investigated to observe crack initiation and deformation patterns at different loadings. It was found that crack initiated at the coating top surface (top surface of TiAlSiN layer) at a loading range of 250–500 mN. Cross-section SEM images of indent surfaces at lower loads revealed shear sliding and radial cracking below the indenter in the coating-substrate interface (bottom surface of Ti(C,N) layer). To better understand coating fracture and deformation, a 3D FE model was used to determine stress distribution in the coating. FEM results showed that maximum Von Mises stresses occur beneath the indenter and its edges, causing shear sliding to take place. Also, maximum principal stresses at lower loads take place beneath the indenter at the coating-substrate interface. As load increases, the maximum principal stress zone changes and is transferred to the coating top surface. Maximum principal stress was produced during the unloading process at the coating top surface or median plane and may cause lateral cracking. Experimental and FEM results were in good agreement.  相似文献   

10.
Novel Ag matrix electrical contacts, which are environment-friendly, are required to operate under complex service conditions and harsh environments. Therefore, it becomes necessary to urgently study their arc erosion properties in different atmospheres. Herein, Ag/Ti3SiC2 composite samples were fabricated by hot-pressing sintering, and the material's relative density, electrical resistivity, thermal conductivity, Brinell hardness, and flexural strength were measured. Moreover, the arc erosion behaviors of Ag/Ti3SiC2 cathodes in sulfur hexafluoride, nitrogen, and oxygen environments were investigated at 3 kV and 6 kV, and the mass loss, arc current, and discharge duration of the Ag/Ti3SiC2 cathodes in the 3 atm were recorded. The surface morphology and composition of the Ag/Ti3SiC2 cathodes were examined after arc erosion. In this study, the arc energy and mass loss had the highest values in oxygen, followed by nitrogen and sulfur hexafluoride. Following the same trend of operating atmospheres, the erosion-region shape gradually changed from circular to irregular. By means of the Raman spectra, there was no composition change can be detected on the cathode in sulfur hexafluoride, TiNx was detected on the cathode in nitrogen, Ag2O, TiO2 and SiO2 were found on the cathode in oxygen. The resistance of the cathode material to arc erosion deteriorated gradually in the sulfur hexafluoride, nitrogen, and oxygen environments. Importantly, the arc erosion mechanism of the Ag/Ti3SiC2 cathodes in different atmospheres is also proposed in this study. This research can provide a reference for the applications of environmentally friendly Ag matrix electrical contact materials in different atmospheres.  相似文献   

11.
A quantitative damage model of ceramic coating systems was developed based on their load-displacement curves obtained from three-point bending tests. According to the energy mechanism of damage, the normalized damage rate of such systems can be simply expressed using the load and the tangent slope of their load-displacement curves. The experimental results demonstrated the thickness dependence of fracture and damage. In thin coating systems, tensile failure was found to be predominant and multiple transverse cracks appeared in the coatings. In contrast, thick coating systems showed a predominance of interface shear failure and the occurrence of interface delamination. These observations are consistent with previous experimental results. The damage of the systems displayed catastrophic characteristics when the load tended to reach the failure point, i.e., the damage increased rapidly, and the damage rate displayed a power-law singularity at the failure point. These results are consistent with the damage characteristics predicted using the mathematic model. The damage evolution in the case of interface delamination in the thick coating systems was faster than that for transverse cracking in the thin coatings because of the difference in the degree of damage localization. The present model provides an effective method to elucidate the damage behavior of brittle ceramic coating systems, and hence, it is expected to greatly aid the coating design.  相似文献   

12.
Ba0.5Sr0.5Co0.8Fe0.2O3−d (BSCF) is a candidate material for the application as oxygen separation membrane. However, the requisite mechanical reliability needs to be warranted. Indentation tests on dense BSCF yielded data for hardness, stiffness and fracture toughness up to a temperature of 340 °C. Complementary to this, the fracture toughness was also evaluated up to 800 °C based on an indentation-strength method.Up to 200 °C, the values of all characteristic mechanical parameters decreased. At high temperatures they increased. The morphology of the indentation cracks depended on the applied indentation load. This was taken into account while selecting suitable expressions for calculating indentation toughness. The temperature dependence of the normalised fracture toughness as determined by indentation technique and indentation-strength method matched quite well. They revealed a good agreement with the temperature dependence of previously reported normalised fracture stresses. In addition to this, the effect of annealing on the mechanical properties of the material was also studied.  相似文献   

13.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   

14.
Multilayered photocatalytic TiO2‐based coating was prepared by spin coating on a high‐density polyethylene (HDPE) substrate. The multilayered coating consisted of a polyurethane (PU) barrier layer and two layers of TiO2 nanoparticles bound with PU. The adhesion between the HDPE substrate and protective PU coating was enhanced by oxygen plasma treatment of the substrate. The improved adhesion contributed to the photocatalytic degradation of palmitic acid. Long‐term activity of the photocatalytic coating in degradation of palmitic acid under UV illumination was followed by FTIR‐ATR. The catalytic activity of the coating was maintained in three identical cycles where palmitic acid was added and UV‐irradiated for 6 h. According to FTIR measurements, the palmitic acid was almost completely decomposed after 6 h, but gas chromatography (GC) analysis showed total decomposition to require 12 h UV illumination (∼ 97% of palmitic acid decomposed in 12 h). Study of the degradation of palmitic acid by GC as a function of time indicated that the degradation kinetics was pseudofirst order, and the rate constant obtained was 0.31 h−1. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The microstructures of materials are sensitive to shock waves and microjets induced by bubble collapse. The microstructure of coatings is thus closely related to their cavitation performance. Coating defects always act as the preferential sites for the bubble growth; thus, the materials around pores have been spalled preferentially under strong impact. In this study, epoxy resin (ER) was introduced into as-sprayed 8?wt% yttria-stabilized zirconia (8YSZ) coating by vacuum impregnation to prepare 8YSZ-ER coating. Results showed that the hardness, toughness, cohesive strength, and density of 8YSZ-ER coating are greatly improved. Cavitation performance is also improved; 8YSZ coating exhibited only a deceleration period whereas 8YSZ-ER coating showed a long steady-state period. This finding was mainly attributed to the enhanced compactness and cohesive strength of 8YSZ-ER coating, which caused the impact force to be evenly distributed on the specimen surface without accumulating in the pores. Cracks were also deflected, turned and terminated due to the presence of ER. Moreover, the relationship between ER aging and the damage mechanism of 8YSZ-ER coating under cavitation erosion was also examined.  相似文献   

16.
In this work, a simple two-step method was developed to produce thick Cr2AlC based coatings. Firstly, atmosphere plasma spraying was employed to deposit Cr-A-C coatings with Cr/Al/graphite mixtures. Then Ar-annealing treatment was conducted on as-sprayed coatings to in situ achieve Cr2AlC. Microstructure evolution and mechanical performance of composite coatings was investigated. The as-sprayed coating exhibited a lamellar feature with mainly Cr7C3 and residual Al. With increasing temperature, the residual Al decreased and the newly formed Cr2AlC phase increased. Especially, high temperature annealing (>700 °C) led to remarkable increasing amount of Cr2AlC phase due to the enhanced atom diffusion. The annealing treatment enhanced both of hardness and fracture toughness of coatings due to the formation of Cr2AlC. However, the increasing amount of Cr2AlC phase resulted in slight decrease of hardness. Thus, the content of Cr2AlC phase played a significant role in mechanical performance of composite coatings, which was adjusted by post-annealing.  相似文献   

17.
《Ceramics International》2022,48(6):8143-8154
The local spalling induced by the propagation and coalescence of cracks in the ceramic layer is the fundamental reason for the thermal barrier coatings (TBCs) failure. To clarify the effects of horizontal and vertical cracks on the coating failure, an integrated model combining dynamic TGO growth and ceramic sintering is developed. The effects of cracks on the normal and shear stress characteristics are analyzed. The driving force and propagation ability of cracks under different configurations are evaluated. The interaction between horizontal and vertical cracks is explored by analyzing the variation of the crack driving force. The results show that TGO growth causes the ratcheting increase of σ22 tensile stress above the valley, and the σ12 shear stress is on both sides of the peak. Ceramic sintering mainly contributes to the ratcheting increase of σ11 tensile stress. There is minimum strain energy when the horizontal crack extends to the peak. The vertical cracks on the surface of the ceramic layer are easier to propagate through the coating than that of other locations. When the horizontal and vertical cracks simultaneously appear near the valley, they can promote the propagation of each other. The present results can offer theoretical support for the design of an advanced TBC system in the future.  相似文献   

18.
陈名华  汪定江  姚武文 《粘接》2007,28(4):21-23
研究了固化剂低分子聚酰胺、有机蒙脱土和纳米Al2O3的用量对环氧树脂胶粘涂层拉伸剪切强度和耐冲蚀磨损性能的影响。试验表明,有机蒙脱土和纳米Al2O3能有效提高涂层拉伸剪切强度和耐冲蚀磨损性能,在最佳配方下,涂层的耐冲蚀磨损性能是Q235钢的10.83倍。  相似文献   

19.
To improve the erosion resistant of carbon‐carbon composites, an SiC coating was synthesized on carbon‐carbon composites by the in situ reaction method. They are firstly coated with carbon layer by slurry, and then SiC coatings are obtained by chemical vapor reaction. The effects of precoated carbon layer on the microstructure and anti‐erosion properties of SiC‐coated C‐C composites were studied and characterized. The thickness of the SiC coating increased with the increase in the precoated carbon layer thickness. The different thickness of carbon layer affects hardness of the SiC coatings, resulting in diverse erosion resistance of the coatings. The SiC coating prepared with moderate thickness of precoated carbon layer exhibits the best erosion resistance, and show better resistance at an impact angle of 30° than 90°. The eroded surface revealed that coating cracking and brittle fracture, fiber‐matrix debonding, fiber breakage, and material removal, and the additional microcutting and microploughing at oblique impact angle are the major erosion mechanism of SiC coating for C/C composites.  相似文献   

20.
Plasma spray coating with ceramic carbide is a promising approach for improving the surface quality of the materials. In this work, the effectiveness of tungsten carbide (WC), chromium carbide (Cr3C2), and the composite coating of the two powders in the weight ratio of 50:50 were investigated. In the erosion test, aluminum oxide (Al2O3) particles were combined with a high-speed air-jet and impinged at 90° on the top surface of the material. Electrochemical polarization and electrochemical impedance spectroscopy studies were conducted with a 3.5 wt.% of sodium chloride (NaCl) solution as the electrolyte. Using a scanning electron microscope, the surface morphology of powders and coatings, as well as the mechanisms of erosion and corrosion, were studied. Energy-dispersive X-ray analysis and X-ray diffractometry were used to reveal the composition and elemental distribution of the feedstock powders and coatings. Because of the presence of hard phases, the composite coating shows the highest average microhardness of 1350.2 HV. The composite coating exhibits improved erosive wear resistance with an increase in erodent exposure time. The Cr3C2 coating has a reduced corrosion current density of 1.404 × 10−5 mA/cm2 and a higher charge transfer resistance of 2086.75 Ω cm2 due to passivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号