首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(1):199-204
MgNb2-xVx/2O6-1.25x (0.1≤x≤0.6) ceramics with orthorhombic columbite structures were prepared at low-temperature by a solid-phase process. The phase component, microscopic morphology, low-temperature sintering mechanism and microwave dielectric performance of MgNb2-xVx/2O6-1.25x ceramics were comprehensively investigated. Low-temperature sintering densification of dielectric ceramics was achieved via the nonstoichiometric substitution of vanadium (V) at the Nb-site. In contrast to pure MgNb2O6 ceramics, the sintering temperature of MgNb2-xVx/2O6-1.25x (x = 0.2) ceramics was reduced by nearly 300 °C owing to the liquid-phase assisted sintering mechanism. The liquid phase arises from the autogenous low-melting-point phase. Meanwhile, MgNb2-xVx/2O6-1.25x (x = 0.2) samples with nonstoichiometric substitution could achieve a more than 900% improvement in the Q × f value, compared with stoichiometrically MgNb2-xVxO6 (x = 0.1, 0.2) ceramics. Finally, MgNb2-xVx/2O6-1.25x dielectric ceramics possess outstanding microwave dielectric properties: εr = 20.5, Q × f = 91000, and τf = -65 ppm/°C when sintered at 1030 °C for x = 0.2, which provides an alternative material for LTCC technology and an effective approach for low-temperature sintering of Nb-based microwave dielectric ceramics.  相似文献   

2.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

3.
4.
《Ceramics International》2022,48(12):17289-17297
In this study, BaSi2O5 ceramics with an orthorhombic structure were synthesized by using a traditional solid-state method at a low temperature by doping with Li2O–B2O3–CaO–CuO (LBCC) glass. The phase composition, mechanism of low-temperature sintering, microwave dielectric properties, and changes in the mesophase during the heating of low-temperature sintered BaSi2O5 ceramics were examined by performing an X-ray diffraction analysis. A compact matrix of BaSi2O5 can be wetted by the liquid phase of the formed LBCC glass. Therefore, LBCC glass with different doping percentages can effectively reduce the sintering temperature of BaSi2O5. The microwave dielectric properties of BaSi2O5 ceramics sintered at 900 °C at 4 wt% of LBCC glass were determined: εr = 7.32, Q × f = 19,002 GHz, and τf = ?35.8 ppm/°C. The chemical compatibility of the samples with Ag was studied at 4 wt% doping with LBCC glass, and the samples were fired for 4 h at 900 °C.  相似文献   

5.
Ni2+ modified MgTa2O6 ceramics with a trirutile phase and space group P42/mnm were obtained. The correlations between crystallographic characteristics and microwave dielectric performance of MgTa2O6 ceramics were systematically studied based on the chemistry bond theory (PVL theory) for the first time. The results indicate that the introduction of Ni2+ causes a change in polarizability and the Mg–O bond ionicity, which contributes to the variation of dielectric constant. Moreover, the lattice energy, and packing fraction, full width at half maximum of the Raman peak of Ta–O bond, as the quantitative characterization of crystallographic parameters, regulate the dielectric loss of MgTa2O6 ceramics in GHz frequency band. In addition, the study of sintering behavior shows that the densification and micromorphology are the crucial factors affecting the microwave dielectric performance. Typically, Ni2+ doping on the A-site of MgTa2O6 can effectively promote the Q × f values to 173,000 GHz (at 7.43 GHz), which ensures its applicability in 5G communication technology.  相似文献   

6.
A cold sintering process is adopted to pre-densify CaF2 ceramics from 85.7% at 300 MPa to 91.7% at 750 MPa. Subsequent post-annealings at 1000–1150 °C lead to further improvements in densification, where great enhancements of grain size and crystallinity are also observed from the scanning and transmission electron micrographs. Significant advances in Qf values are achieved in the post-annealed CaF2 ceramics. The optimum Qf value (80,522 GHz) is achieved after cold sintering at 750 MPa and post-annealing at 1000 °C, which is three times higher than the conventional sintered one at 1000 °C (26,448 GHz). Moreover, the obtained low-εr (5.9–6.5) of CaF2 ceramics suggests broad application prospects in the high-band microwave communications. A microstrip patch antenna is fabricated using the CaF2 ceramics as the substrate, which operates at 7.89 GHz in the C-band, with an S11 of ?13.4 dB, simulated high gain and efficiency of 6.41 dBi and ?0.56 dB, respectively.  相似文献   

7.
《Ceramics International》2022,48(7):9407-9412
Ca1-xBaxMgSi2O6(x = 0–0.4) ceramics were prepared through a traditional solid-state reaction sintering route with various sintering temperatures. The effects of substituting Ba2+ for Ca2+, the relative density, phase composition, crystal morphology, and microwave dielectric properties of Ca1-xBaxMgSi2O6 (x = 0–0.4) ceramics were thoroughly studied. X-ray diffraction patterns indicate a single phase was formed in the samples when x ≤ 0.2, and the second phase BaMg2Si2O7 appeared at x = 0.4. As the amount of Ba2+ substitution increases, the Q×f value first increases and then decreases due to the combined effects of FWHM of peak v11 and atomic packing density, and the εr value was increased continuously which was closely corrected with the relative density and molecular polarization. The τf value improved slightly with the substituting Ba2+ for Ca2+. Typically, the Ca0.88Ba0.12MgSi2O6 ceramic can be well sintered at 1275 °C for 4 h with a maximum relative density of 99.3%, and possesses optimal microwave dielectric properties: εr=7.49, Q×f=64310 GHz, τf=-44.02 ppm/°C.  相似文献   

8.
9.
0.73ZrTi2O6–0.27MgNb2O6 ceramics with various Al2O3 contents (0‐2.0 wt%) were prepared by conventional ceramic route. The effects of Al2O3 on the phase composition, microstructure, conductivity, and microwave dielectric properties were systematically investigated. The coexistence of a disordered α–PbO2‐type phase and a rutile second phase was found in all compact ceramics with low Al2O3 contents (= 0, 0.5, and 1.0 wt%), while a corundum phase was detected when Al2O3 additive increased to 1.5 and 2.0 wt% based on X‐ray diffraction results. With the addition of Al2O3, the decreased grain size of the matrix phase was observed using field‐emission scanning electron microscope, accompanied with increased resistivity and band‐gap energy. Additionally, Al2O3 additives efficiently improved the quality factor of the ceramics. After sintering at 1360°C for 3 hours, the ceramic with 1.0 wt% Al2O3 exhibited excellent microwave dielectric properties: a dielectric constant of 43.8, a quality factor of 33 900 GHz (at 6.6 GHz), and a near‐zero temperature coefficient of resonant frequency (3.1 ppm/°C).  相似文献   

10.
《Ceramics International》2016,42(13):14573-14580
BaO-Sm2O3-5TiO2 (BST5) ceramics with NdAlO3 additions of up to 15 wt% were produced with a solid state reaction method, and their structural and microwave dielectric properties were determined. Experimental results showed that NdAlO3 neither merged nor altered the orthorhombic tungsten bronze structure of the main phase of the produced ceramics (except for a shrinkage in the crystal lattice), but it was segregated in distinct grains in the microstructure of the produced ceramics. However, the amount of NdAlO3 strongly influenced the densification and the microstructure (i.e. grain shape and size) of the produced ceramics. Analysis of the experimental results suggests that the microstructural features can be correlated to the dielectric properties of these ceramics. Accordingly, the dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) of the produced BLT5 ceramics can be tuned with the amount of NdAlO3 additions and the sintering process parameters. The best dielectric properties were achieved for BaO-Sm2O3-5TiO2 ceramics with 7.5% NdAlO3r=73.22, Q×f =10,300 GHz, and τf=−1.05 ppm/°C).  相似文献   

11.
《Ceramics International》2015,41(4):5872-5880
Effects of Zr-substitution on the structure, microstructure and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics have been investigated. A small amount of Zr-substitution facilitates the densification of Ba(Ni1/3Nb2/3)O3 ceramics. Within x≤0.05, the densification temperature decreases with increasing x in Ba[(Ni1/3Nb2/3)1−xZrx]O3, while it turns to increase for x>0.05. With increasing x, the grains become more homogeneous and closely contacted, and significantly increase in size for x=0.15–0.20. The B-site cations 1:2 ordering is destroyed by Zr-substitution, and only stabilizes for x≤0.04. B-site cations 1:1 ordering starts to form in x=0.04, and the 1:1 ordering degree first increases and then decreases with increasing x. Qf value decreases slightly in x=0.01 and then increases monotonously with x increasing from 0.02 to 0.20. The destroyed 1:2 ordering structure is responsible for the decreased Qf value in x=0.01, while the improved grain configuration dominates the increase of Qf value for x=0.02–0.20. The dielectric constant εr increases monotonously with increasing x, due to the higher polarizability of Zr ion than the average value of Ni/Nb ions. The temperature coefficient of resonant frequency τf shifts from negative to positive through zero with increasing x, which is ascribed to the highly positive τf value of the end member BaZrO3. The significant improvement of microwave dielectric properties has been achieved for x=0.10, higher εr, higher Qf as well as near zero τf value have been obtained: εr=31.8, Qf=36,100 GHz, τf=7.8 ppm/°C.  相似文献   

12.
The CaMg1-xCr2x/3Si2O6 (0?≤?x?≤?0.1) microwave dielectric ceramics were synthesized via conventional solid state reaction. In this study, the effects of Cr3+ substituting for Mg2+ on morphology, crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics were explored. XRD diffraction patterns exhibited that the CaMg1-xCr2x/3Si2O6 ceramics possessed the pure phase of CaMgSi2O6 when x?≤?0.06 and a small amount of secondary phase Ca3Cr2(SiO4)3 for 0.08?≤?x?≤?0.1. SEM micrographs revealed that the substitution of Mg2+ with Cr3+ could decrease the grain size. The apparent density was affected by the concentration of Mg vacancies. The correlation between crystal structure and microwave dielectric properties was investigated through the Rietveld refinement and Raman analysis. The microwave dielectric properties were mainly dependent on relative density, ionic polarizabilities, internal strain ?, disordered structure and MgO6 octahedron distortions. Finally, CaMg1-xCr2x/3Si2O6 (x?=?0.02) ceramics sintered at 1270?°C for 3?h exhibited excellent microwave dielectric properties of εr?=?8.06, Q?×?f?=?89054?GHz, τf?=??44.92182?ppm/ºC.  相似文献   

13.
《Ceramics International》2020,46(5):6079-6084
A novel low-loss and temperature stable NiSnTa2O8 ceramic with trirutile structure was prepared using traditional solid-state method. The structure-performance relationships were investigated by Rietveld refinement, chemical bond theory and far-infrared spectrum. The results show that the relative densities play a dominant role in the change of dielectric constant. Theoretical dielectric constant calculated via bond theory, Clausius-Mossotti equation and fitted result of far-infrared spectrum are close to experimental value. Ta–O bonds with greatest bond ionicity and bond energy have the primary contributions to dielectric polarizabilities and dielectric loss. The optimal microwave dielectric performances of NiSnTa2O8 ceramics were obtained: εr ∼21.04, Q×f ∼31328 GHz and τf = −2.63 ppm/°C at 1425 °C.  相似文献   

14.
Ba2MGa11O20 (M = Bi, La; called BBG and BLG, respectively) ceramics with monoclinic space group I2/m were prepared through a solid-state reaction method. BBG ceramic sintered at 1150 °C for 6 h has the best microwave dielectric properties with low εr = 10.68, Q × f = 41,756 GHz, and negative τf = ?61.3 ppm/°C. BLG ceramic sintered at 1440 °C for 6 h exhibits εr = 13.94, Q × f = 45,592 GHz, and near-zero τf = ?16.3 ppm/°C. The large deviation between εr and εth was ascribed to the “rattling” effect of the cations and the existence of lone pair ions of Bi3+. The difference in Q × f of the two ceramics was discussed in terms of packing fraction, and the τf of BLG was closer to zero than that of BBG due to the smaller τε value. Their intrinsic dielectric properties were analyzed through far-infrared reflectivity spectroscopy.  相似文献   

15.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   

16.
Ba2Zn(1+x)Si2O(7+x) ceramics were prepared using the conventional solid-state method at 1200 °C for 3 h in air. Apart from the previously reported Ba2Zn(1+x)Si2O(7+x) (x = 0) with a monoclinic structure (C 2/c), the end-member compositions at x = −1 and 1 exhibit single-phase β-BaSiO3 with an orthorhombic structure (P212121) and BaZnSiO4 with a hexagonal structure (P63), and possess a coexistence of weak ferroelectricity and low-permittivity microwave dielectric properties. A reduction in Zn2+ content mainly decreases the intensity of the εr anomaly peak at lower temperature and increases the εr (or frequency) stability against temperature. The Zn2+-rich BaZnSiO4 phase has a τf value of −181 ppm/°C, whereas the τf value of Zn2+-free BaSiO3 phase decreases to −35.4 ppm/°C. The Zn2+ deficiency in Ba2ZnSi2O7 composition could inhibit the presence of BaZnSiO4 phase and improve the τf value, whereas excessive Zn2+ cations prompt the formation of the BaZnSiO4 phase to deteriorate significantly the τf value.  相似文献   

17.
Novel non-equimolar high-entropy SrLa(Al0.25Zn0.125Mg0.125Ti0.25Ga0.25)O4 (SLAZMTG) ceramics with a layered perovskite structure have been prepared via the standard solid-state reaction method. The high-entropy composition belongs to the tetrahedral structure with a space group of I4/mmm, which is confirmed by the XRD and TEM analyses. Excellent microwave dielectric properties with a suitable dielectric constant (εr = 22.5), high quality factor (Qf = 83,003 GHz), and near-zero τf value of −1.7 ppm/°C are obtained in SLAZMTG ceramics sintered at 1400 °C. Meanwhile, a significant enhancement in compressive strength was achieved due to the improvement of configuration entropy, 912 MPa for SLAZMTG compared to 578 MPa in the pure SrLaAlO4 composition. Additionally, the high-entropy engineering in the present work suggests great potential in achieving low thermal conductivities. SLAZMTG ceramics exhibit low thermal conductivities ranging from 2.86 W/m•K at 323 K to 1.99 W/m•K at 673 K, much lower than those of SrLaAlO4 and other perovskite ceramics.  相似文献   

18.
《Ceramics International》2019,45(11):14160-14166
The CaMg1-xMnxSi2O6(x = 0–0.08)ceramics were reported here for the first time. The relationships among structural characteristics, vibrational modes and dielectric properties for the ceramics were researched based on complex chemical bond theory and Raman vibrational spectroscopy. The formation of a single phase with clinopyroxene structure when x = 0 to 0.08 was detected by X-ray diffraction. The monotonous increase of εr is ascribed to the average bond covalency, polarizability and Raman shift. The Q×f value is influenced by total lattice energy and full width at half maximum of Raman spectra which are both connected with the intrinsic loss. The variation of τf is related to thermal expansion coefficient and M1-site bond valence. Furthermore, the CaMg0.98Mn0·02Si2O6 ceramic sintered at 1300 °C possessed optimal microwave dielectric properties of εr = 8.01, Q×f = 83469 GHz and τf = −45.27 ppm/°C.  相似文献   

19.
It is difficult to get pure-phase Mg3B2O6 (abbreviated as MBO) ceramics by the traditional high-temperature solid-state reaction method. In this paper, pure-phase MBO ceramics were successfully densified and obtained by combining the cold sintering and post-annealing process. The relative density of MBO ceramics was ∼80% cold sintered at 150°C/90 min/800 MPa, which was further improved to ∼91% by post-annealing at 900°C, 400°C lower than that of the traditional high-temperature sintering process (∼1300°C). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman results demonstrated that the secondary phase of MgO was effectively eliminated, and dense microstructure was observed by the cold-sintering process plus post-annealing treatment. Finally, the microwave dielectric properties of MBO were evaluated with εr: 5.15–6.37, Q×f: 5942–16 686 GHz, τf: −48.45–69.72 ppm/°C.  相似文献   

20.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号