首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(2):2010-2015
Al0.97Y0.03PO4 thermal radiation material was prepared by homogeneous precipitation method. The influences of Y-doping on crystallization behavior, infrared vibration absorption, surface chemical elemental composition, chemical environment, grain size and infrared emissivity property were analysed in detail by X-ray diffraction, X-ray photoelectron spectroscopy, Solid state NMR, Scanning electron micrograph and infrared emissivity spectrometer, respectively. It is found that the doping of Y greatly improves the infrared radiation property and reduces the grain size. Compared with non-doped AlPO4, Al0.97Y0.03PO4 thermal radiation material possesses a higher infrared emissivity of 0.931 ± 0.002, which suggests that it will have a promising application in the field of infrared heating and drying.  相似文献   

2.
《Ceramics International》2022,48(8):10555-10561
Spinel materials are gradually becoming promising materials for high infrared emissivity owing to their unique crystal structure. However, the facile low-temperature solid-state synthesis of infrared radiation materials with superior emissivity remains a tremendous challenge. Herein, a general and simple approach for scalable synthesis of CuFe2O4 samples with spinel structure at low temperatures is smartly developed. The optimal experimental conditions for the infrared emissivity of CuFe2O4 are obtained by the detailed investigation into experimental parameters including calcination temperatures, heating rates, and the mass of polyvinyl pyrrolidone. Under the optimal experimental conditions, the infrared emission values of CuFe2O4 in the wavelength range of 3–5 μm can be as high as 0.986. More significantly, the work here will provide significant guidance for the efficient preparation of spinel materials with excellent infrared emissivity, especially at low temperatures.  相似文献   

3.
《Ceramics International》2022,48(17):24866-24876
This study is devoted to NiFe2O4 with different masses of Se (NFO + x%Se) (x = 0.0–4.0%) spinel ferrite nanoparticles production and investigation. The results of the crystal structure, microstructure and magnetic properties are presented as a function of the chemical content of the NFO + x%Se. Superparamagnetic (at 300 K) and ferrimagnetic (at 10 K) states are observed for all samples in the wide magnetic field range. The field dependencies of the magnetization show that Se-substitution does not change the main magnetic characteristics when x<2.0%. We observe a non-linear dependence of magnetic parameters for sample with x ≥ 2.0% (for NFO+2%Se, we determine the increase of the main magnetic parameters for 20% of the average values and the minimum values belong to the NFO+3%Se). The undoped sample and NiFe2O4+x%Se are soft magnets and characterized by the low coercivity (varying in the range 560–647 Oe). At T = 10 K squareness ratio (Sq. = Mr/Ms) is in a range of (0.216–0.318). This indicates a preferable single-domain state of crystallites, which differs from the magnetic structure at T = 300 K. Furthermore, the NFO + x%Se (x = 2.0) have a low overpotential of about ?327 mV, and a small Tafel slope of 91 mV/dec, which makes it a better for HER (hydrogen evolution reaction) catalyst than the undoped NiFe2O4.  相似文献   

4.
5.
《Ceramics International》2015,41(6):7374-7380
Porous magnesium aluminate spinel (MgAl2O4) ceramic supports were fabricated by reactive sintering from low-cost bauxite and magnesite at different temperatures ranging from 1100 to 1400 °C and their sintering behavior and phase evolution were evaluated. The effects of sintering temperature on the pore structure, size and distribution as well as on the main properties of spinel ceramic supports such as flexural strength, nitrogen permeation flux and chemical resistance were investigated. The supports prepared at 1300 °C showed a homogeneous pore structure with the average pore size of 4.42 μm, and exhibited high flexural strength (35.6 MPa), high gas permeability (with nitrogen gas flux of 3057 m3 m−2 h−1 under a trans-membrane pressure of 0.1 MPa) and excellent chemical resistance.  相似文献   

6.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   

7.
High-emissivity coatings have been pointed out as a promising energy-saving solution for industrial furnaces since their development in the aerospace area. However, due to a lack of in-depth knowledge of radiation heat transfer and thermal-optical interactions, as well as the struggle to obtain proper emissivity values, commercial versions of such coatings have not yet been widely established. In this work, the evaluation of some fundamentals on thermal-optical properties, and their potential applications, led to the development of engineered structures of usual inexpensive oxides, such as the titanate and spinel ones, which presented improved emissivity values, even at high temperatures (1500 °C), when compared to commercial references. The findings of these compounds indicated a considerable cost-effective saving potential for large industrial furnaces.  相似文献   

8.
《Ceramics International》2017,43(18):16474-16481
Spinel ferrite (Ni, Cu, Co)Fe2O4 was synthesized from the low nickel matte by using a co-precipitation-calcination method for the first time. The influences of the added amount of NiCl2·6H2O, calcination temperature and time on the structure and magnetic properties of the as-prepared ferrites were studied in detail by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, and Vibrating sample magnetometer (VSM). It is indicated that pure (Ni, Cu, Co)Fe2O4 with cubic phase could be obtained under the experimental conditions (NiCl2·6H2O added amount of 3.0: 100 g mL−1, calcination temperature from 800 to 1000 °C and calcination time from 1 to 3 h). With increasing calcination temperature and time, saturation magnetization (MS) of the synthesized (Ni, Cu, Co)Fe2O4 increased and the coercivity (HC) decreased. Under the optimum conditions (i.e. NiCl2·6H2O added amount of 3.0: 100 g mL−1, 1000 °C, 3 h), the MS and HC values of the product were approximately 46.1 emu g−1 and 51.0 Oe, respectively, which were competitive to those of other nickel ferrites synthesized from pure chemical reagents. This method explores a novel pathway for efficient and comprehensive utilization of the low nickel matte.  相似文献   

9.
采用溶胶?凝胶法合成了Ni2+掺杂的LaAlO3基红外辐射材料LaAl0.6Ni0.4O2.89 (LANO),以其为辐射基料,利用喷涂工艺在氧化铝陶瓷片表面制备红外辐射涂层,考察了磷酸二氢铝、铝溶胶、硅溶胶和钠水玻璃4种粘结剂对涂层物相组成、热稳定性和红外辐射性能的影响. 结果表明,以LANO为辐射基料、铝溶胶为粘结剂时,涂层红外辐射性能最佳,3?5 ?m波段红外发射率达0.93;所制涂层具有良好的抗热震性能,50次热震后涂层未明显剥落失效;涂层具有显著的强化辐射传热效果,节能率达31.7%.  相似文献   

10.
本文采用溶胶-凝胶法制备了不同煅烧温度下的尖晶石型铁氧体Cu Fe2O4系列样品。利用XRD、SEM对样品的结构、形貌进行了表征。结果表明,煅烧温度在800℃以上时,所合成的样品均为单相尖晶石型铁氧体CuFe2O4,样品的形貌呈现球状。在尖晶石型铁氧体CuFe2O4体系中加入H2O2,利用Fenton反应,能够有效地降解亚甲基蓝染料废水。  相似文献   

11.
Engineered materials are crucial for the higher efficiency of supercapacitors. Current work presents roughly shaped spherical NiFe2O4 nanoparticles dispersed in the SiO2 matrix NiFe2O4/SiO2 as a newfangled electrode material for supercapacitors with remarkable performance. Designing the NiFe2O4/SiO2 nanostructure with a sol-gel method followed by the Stober method to grow silica has instigated NiFe2O4/SiO2 as dynamic material with higher electrochemical activity. Physicochemical aspects of NiFe2O4/SiO2 nanostructures are evaluated using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analysis. The electrochemical activity is evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) representing the comparable efficiency and reversibility of the electrode materials. The prepared electrode shows a capacitance of 925 F/g (154.1 mAh/g or 555 C/g) at 1 A/g, with 95.5% capacitance retention after 5000 cycles at 20 mA/cm2. The improved electrochemical performance of the NiFe2O4/SiO2 electrode can be subjected to prompt diffusion process provided by NiFe2O4/SiO2 and enhanced redox reactions owing to the high surface area. The mentioned features decrease the total impedance of the electrodes as suggested by electrochemical impedance spectroscopy (EIS).  相似文献   

12.
This paper reports the structural, morphological, spectroscopic, dielectric, ac conductivity, and impedance properties of nanocrystalline Mn1-xZnxFe2O4. The nanocrystalline Mn–Zn ferrites were synthesized using a solvent-free combustion reaction method. The structural analysis using X-ray diffraction (XRD) pattern reveals the single-phase of all the samples and the Rietveld refined XRD patterns confirmed the cubic-spinel structure. The calculated crystallite size values increase from 8.5 nm to 19.6 nm with the Zn concentration. The surface morphological analysis using field emission scanning electron microscopy and the transmission electron microscopy confirms the nano size of the prepared ferrites. X-ray photoelectron spectroscopy was used to study the ionic state of the atoms present in the samples. Further, the high-resolution Mn 2p, Zn 2p, Fe 2p, and O 1s spectra of Mn1-xZnxFe2O4 does not result in the appearance of new peaks with Zn content, indicating that the Zn substitution does not change the ionic state of Mn, Zn, Fe, and O present in nanocrystalline Mn1-xZnxFe2O4. The investigated electrical properties show that the dielectric constant, tan δ and ac conductivity gradually decrease with increasing Zn substitution and the sample Mn0·2Zn0·8Fe2O4 has the lowest value of conductivity at 303 K. The ac conductivity measured at different temperatures shows the semiconducting nature of the ferrites. The impedance spectra analysis shows that the contribution of grain boundary is higher compared with the grain to the resistance. The obtained results suggest that the Zn substituted manganese ferrite nanoparticles can act as a promising candidate for high-frequency electronic devices applications.  相似文献   

13.
《Ceramics International》2020,46(3):2772-2779
Magnetic nanomaterials have been widely studied as adsorbents in the removal of contaminants from effluents. In this context, lanthanum-doped cobalt ferrites (CoLaxFe2-xO4) were successfully synthesized via sol-gel method at 300 °C. XRD, TEM and BET analyses showed that minute particle size was achieved, with decreases along increasing La3+ content. XRD patterns confirm single cubic spinel CoFe2O4 nanoparticles. The average crystallite size confirmed via TEM images ranges between 5 nm and 12 nm. Surface area increased from 74.3 to 109.3 m2 g−1 with the addition of La3+. Raman spectra indicate a tendency towards inversion of the spinel induced by the addition of the lanthanide. The optical band gap of the samples doped with La showed a progressive decrease from 1.35 to 1.1 eV, which was not expected. Hysteresis loops indicate a transition from hard to soft magnetism. A significant decrease in coercivity from 740 to 158 Oe was observed with increase in La3+ (CoFe2O4 to CoLa0.025Fe1.975O4). Total magnetization (M* defined for maximum available field H = 20 kOe) decayed from 44.6 to 29.0 emu.g−1. These results show that the produced nanoparticles are ideally suited as magnetic adsorbents in separation of pollutants from wastewater.  相似文献   

14.
In recent years, the utilization of nanoparticles for nano-magnetorheological fluid (NMRF) synthesis is gaining popularity in automotive applications. From this perspective, the nickel ferrite (NiFe2O4) nanoparticles were prepared by gel burning method and characterized using the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy-energy dispersive X-ray analysis (FESEM-EDX), and vibration sample magnetometer (VSM). The XRD and FTIR results showed the phase formation and characteristic metal–oxygen M–O vibrations. The FESEM images showed quasi-spherical crystallites with considerable agglomeration. The magnetic properties measured showed the ferromagnetic nature of NiFe2O4. The nanosized NiFe2O4 was used for NMRF preparation and characterization.  相似文献   

15.
《Ceramics International》2020,46(13):21166-21171
Rational design and exploration of high infrared radiation materials with remarkable emissivity at high temperatures are always challengeable. In the work, the spinel copper ferrite products with exceptional infrared radiation performance in the wavenumber range of 3–5 μm are massively fabricated through a simple two-step strategy including hydrothermal treatment and low temperature calcination process. Detailed physicochemical characterizations demonstrate that specific structures, compositions, optical behaviors and infrared radiant properties of resultant CuFe2O4 samples are enormously dependent upon the involved hydrothermal temperatures/time and annealing temperatures. The synthetic parameters were optimized as hydrothermal process at 150 °C for 16 h and subsequent calcination at 800 °C. The desirable crystallinity, hetero-composition and lower band gap energy synergistically endow the optimal CuFe2O4 sample with super high infrared radiation emissivity of ~0.913 evaluated at the testing temperature of 800 °C. Our contribution here will provide significant guidance for scalably low-temperature synthesis of high infrared radiation materials with superb emissivity at high temperatures.  相似文献   

16.
在超声波辐照下共沉淀法得到铁酸锌前驱体,然后在微波辐照下焙烧得到脱硫剂的活性组分铁酸锌。考察了不同焙烧温度和不同焙烧时间对铁酸锌晶相和粒径的影响。实验结果表明,超声波共沉淀法制备铁酸锌是可行的,且在微波辐照下得到的铁酸锌晶相更完整、晶体粒子更为均匀,同时大大缩短了焙烧时间;在700℃下微波焙烧1 h所形成的铁酸锌能较好地满足作为脱硫剂活性组分的要求。  相似文献   

17.
《Ceramics International》2022,48(5):6372-6384
Sm2O3-HfO2 series ceramics were synthesized at high temperature using the solid-state reaction. The phase stability, thermo-physical and infrared emission properties of Sm2Hf2O7 (SHO) and Sm2Hf2O7-44.83 wt%HfO2 (25S/H) composite ceramics were comparatively investigated. Furthermore, their calcium magnesium aluminosilicate (CMAS) corrosion was conducted at 1250°C for different times. The results reveal that both SHO and 25S/H ceramics have excellent phase stability at 1600°C as well as excellent sintering resistance. SHO still exhibits slightly lower thermal conductivity and lower hardness and Young's modulus, higher thermal expansion coefficient (CTE) and fracture toughness as well as higher infrared emittance (0.899 at 800°C) than 25S/H composite with the excessive HfO2 inside. Both SHO and 25S/H ceramics react with CMAS to form a relatively compact reaction layer, which can effectively prevent the penetration of CMAS. These results preliminarily indicate that SHO ceramic can be proposed as an alternative material of the traditional YSZ for high-temperature thermal protective applications thanks to its compatible performance of low thermal conductivity and high infrared radiation, etc.  相似文献   

18.
采用固相高温烧结法制备一种可以高效吸收和热能转换的红外功能涂层用填料,借助扫描电镜(SEM)和X射线衍射(XRD)对涂层填料的形貌、结构进行表征,系统分析涂层材料的物化性能,并对其在燃气传热过程中的实际节能效果进行验证.结果表明:合成的Fe-Mn-Cu体系红外填料具有较高的发射率,用其制备的红外涂层具有较强的耐酸碱性能、较好的附着能力以及较高的耐冲击强度.红外辐射与吸收的匹配程度对燃气的使用效率有重要影响,在金属Al表面涂覆后,使用普通燃气燃烧器可使燃气使用效率提高10.3%,而与红外燃烧器搭配使用时,燃气使用效率提高21.7%.  相似文献   

19.
镁铝尖晶石原料及其产品的优化设计与使用   总被引:3,自引:0,他引:3  
着重阐述了近年来有关合成镁铝尖晶石原料及其产品的优化设计原理和研究使用结果,简要介绍了尖晶石的潜在用途。  相似文献   

20.
《Ceramics International》2016,42(7):7987-7992
Narrow size distribution nickel ferrite nanoparticles with average particle size of around 6 nm has been synthesized via rapid thermo-decomposition method in the presence of oleylamine in solution which acted as neutralizing, stabilizing and reducing agent OAm coated NiFe2O4 NPs. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectra (FT-IR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), Vibrating Simple Magnetometer (VSM) and also Mössbauer Spectroscopy were used for structural, morphological, spectroscopic and magnetic characterization of the product. The XRD analysis revealed the formation of single phase nickel ferrite with Fd-3m space group. Both FT-IR and TGA analyses confirmed the formation of desired nanocomposite. FT-IR analysis also showed characteristic IR absorption bands of the spinel nickel ferrite phase and oleylamine. TEM and SEM analysis showed that product have almost spherical structural morphology. TEM images showed that NiFe2O4 nanoparticles have narrow size distribution and Energy Dispersive X-ray (EDX) analysis confirmed the presence of metal ions in the required stoichiometric ratio. Superparamagnetic property of the product was confirmed by VSM. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values have been determined. The Mössbauer spectra for OAm coated NiFe2O4 NPs. is consisting of one paramagnetic central doublets and one magnetic Zeeman sextet. Finally, the synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号