首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2022,48(7):9313-9323
Thermal environmental barrier coatings (TEBCs) are capable of protecting ceramic matrix composites (CMCs) from hot gas and steam. In this paper, a tri-layer TEBC consisting of 16 mol% YO1.5 stabilized HfO2 (YSH16) as thermal barrier coating, ytterbium monosilicate (YbMS) as environmental barrier coating, and silicon as the bond coating was designed. Microstructure evolution, interface stability, and oxidation behavior of the tri-layer TEBC at 1300 °C were studied. The as-sprayed YSH16 coating was mainly comprised of cubic phase and ~3.4 vol% of monoclinic (M) phase. After 100 h of heat exposure, the volume fraction of the M phase increased to ~27%. The YSH16/YbMS interface was proved to be very stable because only slight diffusion of Yb to YSH16 was observed even after thermal exposure at 1300 °C for 100 h. At the YbMS/Si interface, a reaction zone including a Yb2Si2O7 layer and a SiO2 layer was generated. The SiO2 grew at a rate of ~0.039 μm2/h in the first 10 h and a reduced rate of 0.014 μm2/h in the subsequent exposure.  相似文献   

2.
8 mol.% Y2O3 partially stabilized HfO2 (YSH8) free-standing coating was prepared by air plasma spraying (APS) method, and the crystal structure and phase transformation under 1300 °C were studied using Rietveld method of XRD, SEM and TEM. Results show that the as-sprayed YSH8 coating is mainly composed of tetragonal structure (T phase). The phase transformation of YSH8 coating is controlled by the diffusion of Y element. As the thermal exposure time prolongs, the weight fraction of monoclinic phase (M phase) quickly increases and reaches 68.1 % after 24 h. The Y content at the interface between the M phase and the original microstructure increases to 9 %–17 % after 24 h, and is in cubic phase. After exposure for 24, the T phase completely transforms to C + M phase.  相似文献   

3.
《Ceramics International》2020,46(15):23417-23426
Yttria stabilized hafnia (Hf0.84Y0.16O1.92, YSH16) coatings were sprayed by atmospheric plasma spraying (APS). The effects of thermal aging at 1400 °C on the microstructures, mechanical properties and thermal conductivity of the coatings were studied. The results show that the as-sprayed coating was composed of the cubic phase, and the nano-sized monoclinic (M) phase was precipitated in the annealed coating. The presence of M phase effectively constrained the sintering of the coating due to its superior sintering-resistance. The Young's modulus kept at a nearly same level of ~78 GPa even after annealing, and the coating annealed for 6 h yielded a maximum value of hardness but revealed a declining tendency in the Vicker's hardness with prolonged sintering time. The thermal conductivity increased from 0.8-0.95 W m-1 K-1 at as-sprayed state to 1.6 W m-1 K-1 after annealing at 1400 °C for 96 h. The dual-phase coating is promising to serve at temperatures above 1400 °C due to its excellent thermal stability and mechanical properties.  相似文献   

4.
《Ceramics International》2022,48(14):20201-20210
HfO2 doped Si is designed as bond coat material in thermal/environmental barrier coatings (TEBCs). In this work, the HfO2-Si composite coatings with different HfO2 contents were prepared by atmospheric plasma spraying (APS). The steam oxidation behavior of the coatings was comparatively studied at 1300 °C and 1400 °C. Volatilization of Si occurred during spraying, leading to the deviation of coating compositions. The sprayed coatings contained different HfO2 structures. During steam oxidation, HfSiO4 phase was formed at the SiO2/HfO2 interface by solid-state reaction between them. The HfSiO4 or HfO2/HfSiO4 mixture particles worked to deflect or pin micro-cracks, thus improving the resistance of the coating to cracking. At 1300 °C, a protective oxide scale was formed on the traditional Si coating or the HfO2-Si coating with isolated HfO2 particles. However, the HfO2-Si coating with inter-connected HfO2 framework revealed poor oxidation-resistance. At 1400 °C, accelerated oxidation degradation, steam corrosion volatilization, interface reaction and sintering occurred. The HfO2 framework structure played a dominating role in determining the steam oxidation resistance of the HfO2-Si coating, and the connected HfO2 framework and TGO network provided a rapid diffusion path for oxidants (H2O, O2? and OH?) and deteriorated the oxidation resistance.  相似文献   

5.
《Ceramics International》2022,48(16):23127-23136
To improve high-temperature bearing capability of coatings, novel agglomerated Si-HfO2 powders were prepared by adding HfO2 powders into original Si powders by spray drying method. Three-layer environmental barrier coatings (EBCs) with Si-HfO2 bond layer, Yb2Si2O7 intermediate layer and Yb2SiO5 surface layer were prepared on SiC ceramic substrates by atmospheric plasma spraying (APS). The high temperature properties of coatings were systematically investigated. The results indicated that the coatings had good high temperature oxidation resistance, and remained intact after being oxidized or steam corrosion at 1400 °C for 500 h, so the addition of HfO2 improved the thermal cycling performances of the coating. The HfO2 in Si bond coating could effectively inhibit the growth of thermal grown oxide at high temperatures. This work indicates that the high temperature properties of the coatings are improved by this novel EBCs using the novel agglomerated Si-HfO2 powders.  相似文献   

6.
《Ceramics International》2022,48(24):36539-36555
In this study, La1-xNdxMgAl11-xScxO19 (x = 0.1, 0.2, 0.3; abbreviated as LNMAS-1, 2, 3) coatings which are supposed to possess better properties than LaMgAl11O19 (LMA) were plasma-sprayed and their high-temperature performance were comparatively investigated. Results show that addition of Nd3+ and Sc3+ as dopants to LMA endows corresponding coatings with reduced thermal conductivity and enhanced thermal expansion coefficient, while maintaining advantageous phase stability, although still being subjected to amorphization in plasma flame and following crystallization upon high-temperature service. Furthermore, the doping could cause adherence increasing between topcoat/bondcoat, benefiting from improved melting condition, especially in LNMAS-2 and LNMAS-3 coatings, which is related to the specific powder morphology and lowered melting point. During exposure to 1350°C, mechanical performance and structure integrity of doped free-standing LNMAS coatings can be well preserved even after 400 h aging. In thermal cyclic fatigue test, LNMAS-2 and LNMAS-3 coatings undertake thermal cycling lifetime of ~181 and 191 cycles at 1100°C, respectively, 40% durable than that of LMA coating. These preliminary results suggest that LNMAS-2, 3 might be promising candidates for advanced thermal barrier coating applications.  相似文献   

7.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

8.
《Ceramics International》2022,48(6):8088-8096
The oxidation behavior and microstructure evolution of Lu2O3–SiC-HfB2 ceramic coating specimen at 1700 °C were investigated systematically by experimental study and first-principles simulation. The prepared ternary coating possesses a compact morphology, which effectively defends C/C substrate against oxidation at 1700 °C for 130 h, showing a good antioxidant property. The formed HfSiO4, Lu2Si2O7, and HfO2 with high melting points play an active role in developing the thermal stability of the oxidized scale. Besides, Lu and Hf atoms incline to diffuse into SiO2, which enhances its structural stability. The improved thermal property of the oxidized scale for the Lu2O3–SiC-HfB2/SiC ceramic coating can delay the effective delivery of oxygen inwardly and thus prolong its oxidation protection time. The quick volatilization of SiO2 at 1700 °C induces that some glass phase evaporates with being not completely stabilized, which causes the formation of holes and the consumption of the inner coating.  相似文献   

9.
《Ceramics International》2022,48(12):16715-16722
HfO2 is an important high temperature resistant material, which has a high melting point (2810 °C), good chemical stability and high thermal radiation. Fibrous material has some advantages for heavy refractory matter, such as large aspect ratio, light weight, more energy saving, flexibility and further can be processed into a variety of product forms. In this paper, high strength HfO2 crystalline nanofibers were prepared through self-synthesis polyacetylcatonahafnium (PAHf) with electrospinning method. Phase variation process was discussed in detail, and the HfO2 fibers that use Y2O3 as stabilizer with phase stability were prepared finally. The fibers were composed of nanocrystals with good flexibility even folded in half, tensile strength of 1.6 MPa @ 1000 °C and can lifting up 1288 times its own weight, low density around 35 mg/cm3. The thermal conductivity was stable around 26 mW/(m·K) @ 1200 °C and the temperature can be cooled from 1200 °C to 396 °C after 180 s through 7 mm fibrous membranes. And after treated at 1200 °C for 5 h, the fibrous membranes also maintain high strength and good flexibility. By this kind of precursor method, high strength oxide fibers can be obtained, which has a wide application prospect in field of high temperature thermal protection.  相似文献   

10.
《Ceramics International》2016,42(10):11966-11973
A series of spinel-type CuMn2O4 ceramic pigments were prepared by a facile and low-cost sol-gel solution combustion method and used as cost-effective materials to fabricate thickness sensitive spectrally selective (TSSS) paint coatings by a convenient spray-coating technique. The chemical component, crystalline morphology, and optical property of the copper manganese oxide ceramic pigment could be accurately controlled by altering the annealing temperature. X-ray diffraction (XRD) analysis confirmed that the ceramic pigments annealed at 500 °C for 1 h coincided well with the XRD patterns of crystalline CuMn2O4 in the JCPDS database, and there were segregated phases of CuO and Mn2O3. Furthermore, the pure spinel CuMn2O4 phase could be achieved at 900 °C for 1 h. The copper manganese oxide ceramic pigments could serve as an effective pigment for fabricating the TSSS paint coating, and the TSSS paint coatings based on ceramic pigments calcined at 900 °C showed solar absorptance of 0.895–0.905 and thermal emittance of 0.186–0.310. In addition, the accelerated thermal stability test revealed that the TSSS paint coating exhibited good thermal stability when it was exposed to air at a temperature of 300 °C for 300 h. Hence, the fabricated TSSS paint coating could be used as a solar absorber coating in the low-to-mid temperature domain.  相似文献   

11.
《Ceramics International》2017,43(14):10955-10959
Ba(Mg1/3Ta2/3)O3 (BMT) powders were synthesized by the solid state reaction method. BMT thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying (APS). The phase composition and microstructure of the BMT coatings were characterized. The thermal cycling behavior of the BMT coatings was investigated by the water quenching method from 1150 °C to room temperature. The results reveal that BMT powders have an ordered hexagonal perovskite structure, whereas the as-sprayed coating of BMT has a disordered cubic perovskite structure because of the different degree of structural order for different treatment conditions. During thermal cycling testing, the entire spalling of coatings occurred within the BMT coating near the bond coat. This is attributed to the following reasons: (1) the growth of a thermally grown oxides (TGO) layer, which leads to additional stresses in the coatings; (2) the coefficient of thermal expansion mismatch between the BMT coating and bond coat, which develops enormous stress in the coatings; (3) the precipitation of Ba3Ta5O15 due to the evaporation of MgO during the spraying process, which changes the continuity of the coatings.  相似文献   

12.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications.  相似文献   

13.
《Ceramics International》2021,47(19):27091-27099
Industrial spent MoSi2-based materials and HfO2 were recycled as raw materials to fabricate MoSi2-HfO2 composite coating by spark plasma sintering (SPS). The microstructural evolution of the coatings was characterized and the 1500 °C oxidation behavior was explored. Cracks penetrated through the MoSi2 coating while no cracks can be found in the HfO2-containing composite coating owing to the reduction of the mismatch of thermal expansion coefficient (CTE). Good metallurgical bonding was exhibited since (Mo,Nb)5Si3 diffusion layer was found in the HfO2-containing coating by the diffusion of Nb and Si across the interface without gaps. After 1500 °C oxidation of 20 h, cracks appeared in the surface of SiO2 layer on MoSi2 coating while the HfO2-containing composite coating possessed crack-free oxide scale. HfSiO4 with high temperature (>2900 °C) is formed during oxidation and it inlays in the silica oxide scale to improve the stability. Compared to MoSi2 coating, Nb coated MoSi2-HfO2 has thinner oxide scale with lower mass gain during oxidation, thus presenting better high-temperature anti-oxidation properties.  相似文献   

14.
The oxidation of SiC and the formation of a thermally grown oxide layer (TGO) limit the lifetime of environmental barrier coatings. Thus, this paper focuses on the deposition of denser Yb2Si2O7 coatings using electrophoretic deposition to reduce the TGO growth rate. The findings showed densification for Yb2Si2O7 can be achieved with an optimized sintering profile (heating/cooling rate, temperature, and time). However, the addition of 1.5 wt% of Al2O3 to Yb2Si2O7 promoted densification and lowered the required sintering temperature, 1380 °C using 2 °C/min heating/cooling rate for 10 h provided efficient coating density. Moreover, adding Al2O3 reduced the TGO growth rate by more than 70 % compared to the Al2O3-free coatings, without cracking in TGO after 150 h of thermal ageing at 1350 °C. Results within this study suggest electrophoretic deposition with Al2O3 addition produces promising Yb2Si2O7 environmental barrier coatings on SiC substrate with low oxidation rates and increased lifetime.  相似文献   

15.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

16.
《Ceramics International》2016,42(14):15485-15492
To study the inter-lamellar pores evolution under thermal exposure and how it affects the coating properties, free standing atmospheric plasma sprayed (APS) La2Zr2O7 (LZO) coating was subjected to thermal exposure at the temperatures of 1200 °C and 1300 °C for different durations. It was found that APS LZO coating experiences a rapid sintering during the early 5–20 h of thermal exposure. Such microstructure evolution behavior was attributed to the presence of the lamellar structure, which contains most 2D pores with a small inter-lamellar spacing. As a result, the density, inter-lamellar bonding ratio, mechanical properties and thermal conductivity of the LZO coating remarkably increase in about 20 h of thermal exposure. It was revealed that the evolution of the properties of the APS LZO coating during high temperature exposure is mainly ascribed to the shape change of the inter-lamellar pores for the formation of grain bridging in inter-lamellar pores.  相似文献   

17.
《Ceramics International》2022,48(4):5187-5196
To investigate the silicon/graphite ratio and temperature on preparation and properties of ZrB2–SiC coatings, ZrB2, silicon, and graphite powders were used as pack powders to prepare ZrB2–SiC coatings on SiC coated graphite samples at different temperatures by pack cementation method. The composition, microstructure, thermal shock, and oxidation resistance of these coatings were characterized and assessed. High silicon/graphite ratio (in this case, 2) did not guarantee higher coating density, instead could be harmful to coating formation and led to the lump of pack powders, especially at temperatures of 2100 and 2200 °C. But residual silicon in the coating is beneficial for high density and oxidation protection ability. The SiC/ZrB2–SiC (ZS50-2) coating prepared at 2000 °C showed excellent oxidation protective ability, owing to the residual silicon in the coating and dense coating structure. The weight loss of ZS50-2 after 15 thermal shocks between 1500 °C and room temperature, and oxidation for 19 h at 1500 °C are 6.5% and 2.9%, respectively.  相似文献   

18.
In this study, pure HfO2 and Pr6O11-HfO2 coatings were prepared by atmospheric plasma spraying. The chemical compositions, morphologies, infrared radiation performances and thermal resistances of the coatings were characterized. The results showed that doping Pr6O11 could effectively improve the infrared emittance of the HfO2 coating. The HfO2 coating doping with 10 wt. % Pr6O11 exhibited the highest infrared emittance, which was 0.859 at room temperature and 0.883 at 1600 °C, correspondingly. This was mainly attributed to the oxygen vacancies, which created by the substitution of Hf4+ by Pr3+, could introduce localized energy states within the HfO2 band gap and increase the lattice distortion, producing lower symmetry vibrations. In addition, the Pr6O11-HfO2 infrared radiation coating possessed high tensile adhesive strength and good thermal resistance, which could withstand a high temperature treatment at 1700 °C for at least 50 h without exfoliation, and there was only a slight reduction in emittance.  相似文献   

19.
The structural stability, equation of state, and thermal expansion behavior of nanocrystalline cubic HfO2, an ultra-high-temperature ceramic, have been investigated using X-ray diffraction at extreme conditions of pressures and temperatures. High-pressure studies show that the cubic structure is stable up to 26.2 GPa, while the high-temperature studies show the stability of the cubic structure up to 600°C. The Rietveld structure refinement of the high-pressure data reveals the progressive transition of secondary monoclinic phase to the cubic phase at higher pressures. The phase progression is accompanied by incompressibility along the b axis and a large compressibility along the c axis of the monoclinic structure. The second-order Birch-Murnaghan equation of state fit to the unit cell volume data yielded a bulk modulus of 242(16) GPa for the cubic structure. A linear thermal expansion value of αa(c) = 8.80(15) × 10−6°C−1 and a volume thermal expansion value of αv = 26.5(4) × 10−6°C−1 have been determined from the in situ high-temperature X-ray diffraction studies. The results are discussed by comparing with the high-pressure and high-temperature behavior of isostructural ZrO2. To the best of our knowledge, this is the first experimental report on the structural stability of cubic HfO2 at high pressures.  相似文献   

20.
《Ceramics International》2022,48(21):31652-31660
High-performance thermal barrier coatings (TBCs) made of 4 mol.% Y2O3–stabilized ZrO2 (4YSZ) powder with a spherical thin-walled hollow-shell (STHS) structure exhibited a special microstructure different from the conventional lamellar structure of air plasma-sprayed (APS) coatings. The as-sprayed STHS APS coatings had a completely tetragonal prime (t′) structure and non-lamellated closed-cell structure with high porosity, which resulted in relatively low thermal conductivity (~1.0 W m?1 K?1) and high Vicker's hardness (~6 GPa). The influences of high-temperature aging on the microstructure stability, phase stability, and sintering capability were investigated after long-time heat treatment at different temperatures. The characterization results indicated that the pore content was basically constant, and it was less than 0.5% for sintered linear shrinkage of the STHS coatings after heat treatment at 1500 °C for 100 h. Furthermore, no spalling appeared in the STHS APS coating with the t′ phase structure after 101 thermal cycles of the water-quenching method at 1050 °C, and no monoclinic ZrO2 (m-ZrO2) phase was present in all of the STHS coatings after aging at 1200 °C for 1–1100 h. The excellent anti-sintering properties and phase stability of the STHS coatings are attributed to the closed-pore microstructure and the highly pure t′ phase composition with uniform distribution of ions, respectively. The results suggested that the non-lamellated closed-cell microstructure is beneficial for improving the coating properties, and the results also provide guidelines for microstructure design of TBCs using a feedstock powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号