首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Gallium oxide (Ga2O3) films had been fabricated on Al2O3(0001) substrate by employing pulsed laser deposition (PLD) and annealed at different temperatures under forming gas (FG) atmosphere (95% N2 + 5% H2). The influence of annealing temperature on the structural, optical, chemical composition, and surface morphological properties of the Ga2O3 thin films was investigated comprehensively. The annealing processes with hydrogen gas play a crucial role in the characteristics of Ga2O3 thin films. A crystallization mechanism of Ga2O3 films controlled by annealing temperature has been proposed firstly and analyzed systematically, which contains three kinds of competitive mechanism, namely the thermal enhanced crystallization, the enhanced H2 dissociative adsorption on Ga2O3 surfaces, and the high-temperature decomposition of Ga2O3. Both Ga+ and Ga3+ oxidation valence states were presented in all samples, which indicated lattice oxygen deficiency in Ga2O3 films. The variation of the non-lattice oxygen proportion of Ga2O3 films related to the crystallization mechanism firstly increased and then decreased with the increase of annealing temperature. The detailed crystallization mechanism of PLD-Ga2O3 films annealed in FG offers a guideline and references for the further fabrication of high-quality Ga2O3 films and their applications in high-performance devices.  相似文献   

2.
《Ceramics International》2020,46(4):4314-4321
BiFe0.99Zn0.01O3 (BFZO) films were annealed in different atmospheres (Air, N2 and O2) on ITO/glass substrates. The influences of the different annealing atmospheres on the oxygen vacancy concentration, microstructure, ferroelectric behavior, leakage current, leakage mechanism, aging and dielectric performance of the BFZO films were studied. The crystallization and grain development for the sample annealed in an O2 atmosphere improved, and the concentrations of the Fe2+ and oxygen vacancies were the lowest among the samples studied herein. The BFZO film had the lowest leakage current density and the best ferroelectric performance in an O2 annealing atmosphere among the samples studied herein, and the leakage was due to the F-N tunneling effect mechanism. From the perspective of the volume effect, the aging model was established, and the aging mechanism of the BFZO films was discussed in depth. Compared with Air and N2, the annealed film in O2 exhibited no obvious aging.  相似文献   

3.
Mn-doped β-Ga2O3 (GMO) films with room-temperature ferromagnetism (RTFM) are synthesized by polymer-assisted deposition, and the effects of annealing atmosphere (air or pure O2 gas) on their structures and physical properties are investigated. The characterizations show that the concentrations of vacancy defects and Mn dopants in various valence states and lattice constants of the samples are all modulated by the annealing atmosphere. Notably, the samples annealed in air (GMO–air) exhibit a saturation magnetization as strong as 170% times that of the samples annealed in pure O2 gas (GMO–O2), which can be quantitatively explained by oxygen vacancy (VO)-controlled ferromagnetism due to bound magnetic polarons established between delocalized hydrogenic electrons of VOs and local magnetic moments of Mn2+, Mn3+, and Mn4+ ions in the samples. Our results provide insights into mechanism-based tuning of RTFM in Ga2O3 and may be useful for design, fabrication, and application of related spintronic materials.  相似文献   

4.
《Ceramics International》2020,46(14):22550-22556
The 10 nm thick yttrium doped hafnium oxide (Y:HfO2) thin films, prepared by chemical solution deposition which using all-inorganic aqueous salt reagents, were fabricated on Si (100) substrates. The crystalline structure, chemical composition and ferroelectric properties of thin films, annealed in protection atmosphere of Air, Ar and N2, were examined. Result showed that the crystalline structure and ferroelectric properties of films exhibited a strong annealing protection atmosphere dependence. When compared to annealing protection atmosphere of Air and Ar, the films with the N2 exhibited lowest m-phase fraction of 19.4%, and the highest oxygen vacancy percentage content of 3.06%, accompanied with the highest relative permittivity of 50.9 and the remanent polarization of 14.6 μC/cm2. These excellent ferroelectric properties were correlated with asymmetric orthorhombic phase and the concentration of oxygen vacancy introduced from the nitrogen doping concentration.  相似文献   

5.
Spin-coating was performed to fabricate amorphous high-entropy oxide (HEO) (AlTiVZrHf)Ox films on Si substrates. The films were evaluated through X-ray photoelectron spectroscopy and through transmission electron microscopy (TEM)-based energy-dispersive spectroscopy (EDS) mapping, which respectively revealed all constituent elements and the homogenous distributions and no aggregation of those elements. TEM analysis revealed four distinct layers—a crystalline Al metal gate, an amorphous Al2O3 interfacial layer, amorphous (AlTiVZrHf)Ox, and native amorphous SiO2—in a patterned metal–oxide–semiconductor (MOS) gate stack on the Si substrate. The resulting stack exhibited a low leakage current density (JL) and no frequency dispersion in its capacitance–voltage characteristics after undergoing forming gas annealing. The obtained dielectric constant (k ≈ 32) for the HEO film is promising for advanced gate stacks and transistor applications. Although the film exhibited minor nanocrystallinity and the stack exhibited no interfacial Al2O3 layer after rapid thermal annealing at 900 °C, a low JL, distinct layers, and a clearly defined interface between the (AlTiVZrHf)Ox and SiO2 were observed, indicating no substantial diffusion among these layers. EDS mapping revealed the homogenous distribution of each constituent element without aggregation. Medium-entropy-oxide films and their MOS devices were fabricated for comparison; however, they exhibited inferior performance.  相似文献   

6.
《Ceramics International》2023,49(7):10634-10644
This work explored the properties of RF magnetron sputtered Sn-doped Ga2O3 films grown on sapphire substrates at different oxygen flow ratios from 0.0 to 2.5%. The in situ optical emission spectroscopy was conducted to monitor the plasma radicals generated during the films’ deposition. All the films deposited at room temperature show amorphous structures with some nanoparticles. The deposition rate decreased monotonically with increasing oxygen flow ratio. The proposed conductive mechanism of the films can be mainly attributed to the changes in the ratio of substitutional Sn (Sn4+ valance state) atoms replacing lattice Ga sites (Ga3+ valance state) and the SnO2 phase in the films. Metal–semiconductor–metal solar-blind photodetectors were developed and analyzed to illustrate the effect of oxygen flow ratio. A high performance photodetector with a low dark current of 1.14 pA, high on/off ratio of 812 and short rise/decay time of 0.05 s/0.12 s was realized at an optimization growth condition. The elaboration of the conductive mechanism and effect of oxygen flow ratio on the performance of Sn-doped Ga2O3 films and their photodetectors is crucial for the preparation of high-quality Sn-doped Ga2O3 films and its application in optoelectronic devices.  相似文献   

7.
Flexural tensile and compressive constraints were applied mechanically to the 7.5 nm thick HfO2 films on Si substrates to investigate the influences of stress on the Si outward emission behavior in Si/HfO2 during annealing. The constraint stress inhibited further growth of the interfacial layer (IL) between HfO2 and Si, suppressing the IL‐growth‐induced Si outward emission. This fact was associated with atomic rearrangement that was induced during constrained annealing, resulting in the formation of a robust HfO2 layer with low oxygen vacancy. Such an HfO2 layer effectively suppressed the inward diffusion of oxygen, the IL growth and the Si out‐diffusion.  相似文献   

8.
《Ceramics International》2021,47(21):29748-29757
This study systematically investigated the structural, optical, and morphological evolution of Gallium oxide (Ga2O3) films deposited at different substrate temperatures on Al2O3(0001) using pulsed laser deposition (PLD). The thickness of the Ga2O3 films was standardized in order to eliminate its effect on the film properties. The effect of substrate temperature from room temperature to 600 °C on the film's transmittance, crystalline structure, chemical composition and surface morphology, was explored. The plasma species generated during the deposition of the PLD process were monitored and analyzed employing in situ optical emission spectroscopy. The deposition rate of the films decreased with increasing substrate temperature. X-ray photoelectron spectroscopy was used to detect both Ga3+ and Ga + oxidation states in all prepared films, which indicated substoichiometric Ga2O3 films deficient in oxygen. The percentage of non-lattice oxygen decreased with increasing substrate temperature. At optimal condition, mono-crystaline β-Ga2O3 was produced with a high visible and near-infrared transmittance, large grain size and smooth surface, which is suitable for the application in high-performance power electric devices and photoelectronic devices.  相似文献   

9.
Influences of thermal annealing on structural, optical and morphological properties of the tantalum pentoxide (Ta2O5) thin films were investigated and anti-reflective performances were discussed in detail. The Ta2O5 thin films were deposited onto Corning Glass (CG), Si, GaAs and Ge substrates by radio-frequency (RF) magnetron sputtering technique using Ta2O5 ceramic target. The obtained secondary ion mass spectroscopy (SIMS) analysis results showed that uniform Ta and O distribution have formed throughout depth of the films deposited on substrates. The X-Ray diffraction (XRD) results indicated that the annealed Ta2O5 thin films at 100, 200, 300 and 500?°C have exhibited amorphous (a-Ta2O5) characteristic. The increased temperature has resulted in increasing the surface roughness from 0.67 to 1.60?nm. The optical transmittance of the annealed thin films has increased from 70.85 to 80.32% with increasing temperature. Spectroscopic ellipsometer (SE) measurement results demonstrated that the increased temperature has increased the refractive index of the Ta2O5 thin film from 2.11 to 2.18. The Ta2O5 thin film has reduced the average optical reflectivity of the Si, GaAs and Ge substrates by 78, 55 and 70%, respectively. In addition, thermal annealing process has decreased the optical reflectivity of the film. The obtained experimental results showed that single-layer Ta2O5 thin films can be used as anti-reflective layer in optical and optoelectronic applications. The best optical transmittance and anti-reflective performance were obtained at the annealing temperature of 500?°C.  相似文献   

10.
《Ceramics International》2019,45(15):18320-18326
The Sr2Bi4Ti5O18 (SBT-5) ferroelectric thin films were prepared on Pt/Ti/SiO2/Si substrate using the sol-gel method and annealing in oxygen, air, and nitrogen. Their properties were measured. After annealing in oxygen, the films showed good crystallization and a larger average grain size of approximately 34.05 nm. XPS analysis clearly showed that annealing in oxygen inhibited the generation of oxygen vacancies in the films, which contributed to the melioration of the ferroelectric properties. The remanent polarization was 20.09 μC/cm2 and the coercive field was 75 kV/cm. When the electric field was 15 kV/cm, the leakage current density was approximately 3.88 × 10−7A/cm2, while the Ohmic conduction was the dominating leakage mechanism. Because the content of the oxygen vacancy in the samples annealed in oxygen atmosphere was lower, the fixing effect on the domain structure was weaker and the volume effect was not obvious, so the aging degree of the samples was low. The larger relative dielectric constant was 742, while the dielectric loss was 0.037 when the test frequency was 2.0 × 105 Hz.  相似文献   

11.
This paper presents the optimal atmosphere annealing conditions for Mn1.2Co1.5Ni0.3Oδ ceramic thin films fabricated by the RF magnetron sputtering method. The microstructure and oxygen distribution, together with electrical properties, are combined and applied for determining thermal stability. All of the Mn1.2Co1.5Ni0.3Oδ films, which are annealed at various oxygen atmosphere from 1 × 10?3 to 1 × 105 Pa, exhibit a negative temperature coefficient characteristic and show a poly-crystalline spinel structure. The film which annealed at 10 Pa with the most uniform and most dense surface morphology has the minimum resistivity compared to the others. It is characterized by the highest Mn3+ and Mn4+ pair content, which gives the highest carrier concentration of ceramic films. Combined with the aging test at 125 °C for 500 h, the films annealed at 10 Pa have the minimum resistance drift (ΔR/R0 = 2.35%), which is mainly affected by the oxygen vacancy concentration. This demonstrates that the film thermistors annealed in a hypoxia state will never be stable. This is because there will be several oxidation reactions leading to a continuous generation of cationic vacancies during high temperature aging. The present results will open a way to design desired stable negative temperature coefficient thermistors by adjusting the annealing oxygen atmosphere of films.  相似文献   

12.
《Ceramics International》2023,49(6):9069-9089
The process conditions for selectively forming crystal polymorphs in Er3+-doped Bi2O3 films deposited on Si, SiO2, and C-plane sapphire substrates were systematically investigated. Bi2O3:Er films were deposited at either room temperature or 300 °C and subsequently post annealed to promote crystallization. The critical factor controlling the crystal polymorphs was Er content. When the Er content was less than 1.5 at.%, only α-Bi2O3 phase nucleated upon post annealing. Deposition at 300 °C somewhat lowered the oxidization state, under which β-Bi2O3 structure appeared at lower temperatures and α-Bi2O3 structure appeared at higher temperatures. When the films were doped with over 2 at.% Er3+ ions, the excess Er2O3 stabilized the δ-Bi2O3 structure as the lowest temperature phase. The universal phase transition scheme with increasing annealing temperature was δ-Bi2O3 → β-Bi2O3 → α-Bi2O3. The δ → β transition proceeded through splitting each diffraction peak of δ-Bi2O3 into two components of β-Bi2O3, indicating a correlation between the structures of β-Bi2O3 and δ-Bi2O3. The γ-Bi2O3 phase appeared only in films on Si(100) substrates and after vacuum annealing, suggesting the formation of sillenite (Bi12SiO20). Deposition on C-plane sapphire by using H2O as the oxygen source gas produced a highly (111)-oriented δ-Bi2O3 structure, whereas deposition with O2 yielded a randomly oriented δ-Bi2O3 structure. At Er content exceeding 4 at.%, δ-Bi2O3 was the primary phase in the films on SiO2. The photoluminescence (PL) activity of dopant Er3+ under excitation at a wavelength of 532 nm strongly depended on the crystal polymorphs. α-Bi2O3:Er exhibited intense and stable PL spectra consisting of eight Stark splitting lines. PL from γ-Bi2O3:Er exhibited much weaker two emission lines. δ-Bi2O3:Er and β-Bi2O3:Er films were not emission-active at all. However, δ-Bi2O3:Er film on SiO2 with an Er content of 4 at.% exhibited an intense and broad emission at 1530 and 1560 nm.  相似文献   

13.
Titanium oxide thin films were deposited on p-type Si(100), SiO2/Si, and Pt/Si substrates by plasma enhanced chemical vapor deposition using high purity Ti(O-i-C3H7)4 and oxygen. As-deposited amorphous TiO2 thin films were treated by rapid thermal annealing (RTA) in oxygen ambient, and the effects of RTA conditions on the structural and electrical properties of TiO2 films were studied in terms of crystallinity, microstructure, current leakage, and dielectric constant. The dominant crystalline structures after 600 and 800 ‡C annealing were an anatase phase for the TiO2 film on SiO2/Si and a rutile phase for the film on a Pt/Si substrate. The dielectric constant of the as-grown and annealed TiO2 thin films increased depending on the substrate in the order of Si, SiO2/Si, and Pt/ Si. The SiO2 thin layer was effective in preventing the formation of titanium silicide at the interface and current leakage of the film. TEM photographs showed an additional growth of SiOx from oxygen supplied from both SiO2 and TiO2 films when the films were annealed at 1000 ‡C in an oxygen ambient. Intensity analysis of Raman peaks also indicated that optimizing the oxygen concentration and the annealing time is critical for growing a TiO2 film having high dielectric and low current leakage characteristics.  相似文献   

14.
Silicon-rich Al2O3 films (Six(Al2O3)1−x) were co-sputtered from two separate silicon and alumina targets onto a long silicon oxide substrate. The effects of different annealing treatments on the structure and light emission of the films versus x were investigated by means of spectroscopic ellipsometry, X-ray diffraction, micro-Raman scattering, and micro-photoluminescence (PL) methods. The formation of amorphous Si clusters upon the deposition process was found for the films with x ≥ 0.38. The annealing treatment of the films at 1,050°C to 1,150°C results in formation of Si nanocrystallites (Si-ncs). It was observed that their size depends on the type of this treatment. The conventional annealing at 1,150°C for 30 min of the samples with x = 0.5 to 0.68 leads to the formation of Si-ncs with the mean size of about 14 nm, whereas rapid thermal annealing of similar samples at 1,050°C for 1 min showed the presence of Si-ncs with sizes of about 5 nm. Two main broad PL bands were observed in the 500- to 900-nm spectral range with peak positions at 575 to 600 nm and 700 to 750 nm accompanied by near-infrared tail. The low-temperature measurement revealed that the intensity of the main PL band did not change with cooling contrary to the behavior expected for quantum confined Si-ncs. Based on the analysis of PL spectrum, it is supposed that the near-infrared PL component originates from the exciton recombination in the Si-ncs. However, the most intense emission in the visible spectral range is due to either defects in matrix or electron states at the Si-nc/matrix interface.  相似文献   

15.
Magnetoelectric (ME) property modulation in heterostructured (Ni0.5Zn0.5)Fe2O4/Pt/Pb(Zr0.3Ti0.7)O3 (NZFO/Pt/PZT) thin films on platinized Si substrate by thermal annealing condition variation was studied. In an attempt to prevent interfacial reaction between NZFO and PZT layers during high temperature annealing, thin Pt layer was deposited which can serve as inter-diffusion barrier as well as electrode. The ferroelectric, magnetic, and ME properties of the heterostructured film were noticeably modulated due to microstructural evolution and clamping relaxation developed during thermal annealing process. Room temperature ME voltage coefficient of the heterostructured thin films was enhanced with increasing annealing temperature and reached to 29 mV/cm·Oe when annealed at 650 °C.  相似文献   

16.
Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C.  相似文献   

17.
Dielectric materials with lower permittivity (low k) are required for isolation to reduce the interconnect RC delay in deep submicron integrated circuit. In this work, carbon doped silicon oxide [SiO(C–H)] films are investigated as a potential low k material. The films were prepared by the radio frequency plasma enhanced chemical vapor deposition (PECVD) technique from trimethylsilane (C3H10Si or 3MS) in an oxygen (O2) environment. SiO(C–H) films deposited with O2 and 3MS flow rates of 100 sccm and 600 sccm, respectively have been previously found to produce dielectric constant as low as 2.9. This is attributed to the incorporation of carbon in the form of Si–CH3 bond, which has lower polarizability compared to the Si–O bonds that were replaced. In this work, these low k films were annealed at 400, 500, 600 and 700 °C in a N2 atmosphere for 30 min to determine the thermal stability of their properties. The films were characterized in terms of their thickness shrinkage, refractive indices, dielectric constants, infrared absorption, surface morphology and stress upon annealing. For annealing temperatures up to 500 °C, which is beyond the current highest processing temperature for back end of the line structure of around 450 °C, a slight decrease in the refractive indices and dielectric constants of the films are observed. The SiO(C–H) films also remain smooth and exhibit tensile stress with stress level that is within practical acceptable range. The results suggest that the SiO(C–H) films are thermally stable to be applied as low dielectric constant materials for deep submicron integrated circuit.  相似文献   

18.
In this study, a wide range of a-SiN x :H films with an excess of silicon (20 to 50%) were prepared with an electron-cyclotron resonance plasma-enhanced chemical vapor deposition system under the flows of NH3 and SiH4. The silicon-rich a-SiN x :H films (SRSN) were sandwiched between a bottom thermal SiO2 and a top Si3N4 layer, and subsequently annealed within the temperature range of 500-1100°C in N2 to study the effect of annealing temperature on light-emitting and charge storage properties. A strong visible photoluminescence (PL) at room temperature has been observed for the as-deposited SRSN films as well as for films annealed up to 1100°C. The possible origins of the PL are briefly discussed. The authors have succeeded in the formation of amorphous Si quantum dots with an average size of about 3 to 3.6 nm by varying excess amount of Si and annealing temperature. Electrical properties have been investigated on Al/Si3N4/SRSN/SiO2/Si structures by capacitance-voltage and conductance-voltage analysis techniques. A significant memory window of 4.45 V was obtained at a low operating voltage of ± 8 V for the sample containing 25% excess silicon and annealed at 1000°C, indicating its utility in low-power memory devices.  相似文献   

19.
《Ceramics International》2023,49(1):600-606
YFeO3 (YFO) thin films were deposited onto quartz substrates via sol-gel spin-coating technique and annealed at different temperature ranged between 650 and 900 °C. The impact of annealing temperature on the phase formation, microstructural, optical, photoluminescence (PL) and magnetic properties of the films were systematically investigated. X-ray diffraction analysis revealed an amorphous structure in film annealed at 650 °C and formation of hexagonal-YFO (h-YFO) phase in films annealed at 750–800 °C. The films annealed at 850–900 °C exhibited an orthorhombic-YFO (o-YFO) structure. Atomic force microscopy images of h-YFO films showed homogeneous surface with uniform particles size and shape. The particle size increased and had irregular shape in o-YFO films. The average particle size was 44 and 117 nm, while the root square roughness was 1.38 and 2.55 nm for h- and o-YFO films annealed at 750 and 850 °C, respectively. The optical band gap (Eg) was 2.53 and 2.86 eV for h- and o-YFO films annealed at 750 and 850 °C, respectively. The PL spectra of h-YFO films were red-shifted compared with that of o-YFO films. The PL emission related to near band edge was observed at 459.0 and 441.9 nm for h- and o-YFO films annealed at 750 and 850 °C, respectively. The magnetization was enhanced with the increasing of annealing temperature and has the value of 4.8 and 12.5 emu/cm3 at 5000 Oe for h- and o-YFO films annealed at 750 and 850 °C, respectively.  相似文献   

20.
The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号