首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2023,49(19):30915-30923
B2O3-MnO2-CdO ternary oxide glasses with amorphous properties were synthesised using the melt-quenching method. Structural and physical property analyses showed that the amount of non-bridging oxygen and the system stiffness increases, and the oxide network filling is more tightly packed as cadmium oxide (CdO) gradually replaces manganese Oxide (MnO2) in the glass. The radiation-shielding performance of the B2O3-MnO2-CdO glasses was evaluated using the shielding parameters calculated by the MCNPX simulation and the Phy-X program. Glasses with 40% and 50% CdO loading exhibited an average specific lead equivalent (PbE) of 0.241 and 0.294 mmPb/mm in the medical X-ray diagnostic area at 0.03–0.08 MeV; thus, they could fully meet the specific PbE requirements for application as "protection devices against diagnostic medical X-radiation". Furthermore, their photon attenuation capability is superior to that of various commercial shielding glasses in fast-neutron nuclear applications at 1°–103 MeV. In addition, compared to the borate glass systems studied in the literature, B2O3-MnO2-CdO glasses have fast neutron removal cross-sections of 0.125 cm−1 at a smaller density of 3.9043–4.8135 g/cm3, making them potentially excellent fast neutron absorbers.  相似文献   

2.
Herein, a traditional melt quenching method was utilized to synthesize glasses with a nominal chemical composition (80-x)TeO2-xB2O3–5ZnO–5Li2O3–10Bi2O3: 30≤ x ≤ 80 mol%). The produced sample was coded as TBBZL30 to TBBZL80. X-ray diffraction (XRD) has been employed to test the amorphous nature of the synthesized samples. In the range of 200–500 nm wavelength, UV–Vis spectra for the glasses have been performed. Optical energy gaps (Egap) have been determined based on the absorption measurements. With the help of (Egap), refractive index (n), molar polarizability (αM), metallization criterion (MCri.), molar refractivity (RM), static dielectric constant (εSta.), optical dielectric constant (εOpt.), reflection loss (RL) and optical transmission (TOpt.) have been calculated. For the fabricated boro-tellurite glasses, Phy-X/PSD was used to report some shielding factors for several energies between 15 keV and 15 MeV. The maximum attenuation for all samples took place at 15 keV and the mass attenuation coefficient varied between 52.309 and 57.084 cm2/g. The linear attenuation coefficient (LAC) results demonstrated that TBBZL80 has the highest attenuation than the rest of samples which is due to high content of TeO2 (containing 80 mol% of TeO2) whereas TBBZL30 has the lowest attenuation. The LAC for the fabricated samples varied between 230.160 and 351.064 cm-1 at 15 keV. The minimum effective atomic number (EAN) occurred between 0.8 and 4 MeV and varied between 15.16 and 17.35 for TBBZL30 and 25.10–28.33 for TBBZL80. The addition of TeO2 was found to enhance the EAN and improved shielding properties for the tested TBBZL glass systems.  相似文献   

3.
A study has been carried out of the interactions of NH3 with TiO2, Nb2O5, and Nb2O5/TiO2. Raman spectroscopy was used to characterize the structure of the adsorbed NH3 and perturbations of species present at the surface of the adsorbent. On each oxide, NH3 adsorbs predominantly at Lewis acid sites. Hydrogen-bonding occurs between the adsorbed NH3 and OH groups present on the surface of TiO2. A small concentration of NH 4 + is observed, consistent with the relatively low concentration of Brønsted acid sites compared to Lewis acid sites on each of the samples investigated. Exposure of Nb2O5/TiO2 to NH3 at temperatures up to 500°C does not result in partial reduction of the supported niobia.  相似文献   

4.
《Ceramics International》2023,49(16):26505-26515
The current work is interested in the preparation, characterization, and mechanical-optical properties of the glasses in the (75-x)B2O3–10SrO–8TeO2–7ZnO−xWO3 system, with (x = 0 (BSTZW0), 1 (BSTZW1), 5 (BSTZW2), 10 (BSTZW3), 22 (BSTZW4), 27 (BSTZW5), 34 (BSTZW6), and 40 mol% (BSTZW7). The preparation of the glasses has involved the melt-quenching route. The new glasses are characterized by different characterization techniques using densimeter, microhardness, Raman spectroscopy, UV–visible absorption and emission, and X-ray diffraction. Photoluminescence can determine the impact of substituting B2O3 with WO3 on the mechanical-optical parameters and the structure of the present glasses. The prepared samples’ X-ray patterns showed amorphous states. The density value rises from 2.88 to 4.50 g/cm3, with the amount of WO3 rising from 0 to 40 mol% as a result of the difference in molecular weight between WO3 and B2O3. The Vickers microhardness (Hv) rises as the amount of WO3 increases as a result of a decrease in free volume and the formation of covalent bonds. The elastic moduli were found to increase when the WO3 concentrations increased from 0 to 40 mol%. This increase depends on the formation of bridging oxygen atoms. The Raman bands are designed to correspond to the bonds that form the structure of the current glass and detect the insertion of WO3 content by the attribution of the new W–O–W and W–O bonds. The UV–Visible spectroscopy analysis showed no band characteristic for the reduced species of W5+ ions identified by dark blue. However, the photoluminescence spectra showed emission bands (under excitation at 300 nm) that are associated with the active centers of W4+, W5+, and W6+ ions.  相似文献   

5.
The differential thermal analysis (DTA), X-ray diffractometer and scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) techniques were used to investigate the microstructural characterization and the thermal behavior of the three (1 − x)TeO2xCdF2 (x = 0.10, 0.15, 0.25 mol) glasses. The effect of the heating rate, annealing temperature and CdF2 content on the thermal and the microstructural properties of TeO2–CdF2 binary glasses were enquired. DTA analysis has shown that as the CdF2 content in the glass composition increases, the value of the glass transition and the peak crystallization temperatures shift to higher values. SEM/EDS investigations have shown that the crystal formation of α-TeO2, γ-TeO2 and CdTe2O5 crystal phases were observed when the 0.90TeO2–0.10CdF2 and the 0.85TeO2–0.15CdF2 glass samples were annealed to temperatures above the crystallization temperatures. X-ray diffraction (XRD) results illustrated clearly the transformation of the metastable γ-TeO2 phase to stable α-TeO2 crystalline phase as the annealing temperature was increased from 385 to 425 °C for the 0.75TeO2–0.25CdF2 glass.  相似文献   

6.
To observe direct effect of samarium (III) oxide reinforcement on physical, thermal, optical, structural and nuclear radiation attenuation properties, a broad-range experimental and numerical investigations were performed with a group of novel borotellurite glasses. FTIR spectra of powdered samples were taken at 250-4000 cm-1. The transmittance and absorption characteristics, optical band gaps, and Urbach energies were measured. The glass transition temperatures, crystallization temperatures and melting temperature values of the samples were determined. Nuclear radiation shielding properties have been determined for gamma-ray, neutrons and heavy charged particles. The lowest transmittance and highest absorbance were reported for the TBVS1.5 sample with highest Sm2O3 additive. In addition, obtained results from the nuclear radiation shielding calculations have showed that TBVS1.5 sample has superior nuclear radiation shielding properties against gamma-ray, neutron and heavy charged particles. The increasing Sm2O3 additive has visibly improved the nuclear radiation attenuation properties by keeping other material properties within usable limits.  相似文献   

7.
Gd2Mo3O12 ceramics were prepared using the traditional solid-phase reaction method. All samples were found to possess an orthorhombic crystal structure with a space group of Pba2, as revealed by refined XRD results. The ceramic sintered at 1000 °C exhibited a high relative density of 96.95 % and superior microwave dielectric properties, including εr of 9.42 ± 0.05,  × f of 49258 ± 1200 GHz, and τf of −71.8 ± 0.7 ppm/°C. The results suggest a correlation between an increase in εr and higher relative density, and a more compact and uniform microstructure can lead to higher  × f value. Chemical bonding theories and Raman spectroscopy analysis reveal that Mo-O bonds, rather than Gd-O bonds, dominate the microwave dielectric properties. Furthermore, the εr of Gd2Mo3O12 ceramic was closely related to bond ionicity, while  × f and τf were mainly determined by lattice energy and bond energy, respectively.  相似文献   

8.
《Ceramics International》2022,48(2):2124-2137
In a bid to expand the amount of information available on glass systems and their potential applications for radiation shielding design, glass samples with the compositions (30-x)SrO-xAl2O3–68B2O3–2V2O5(x = 5, 7.5, 10, 12.5&15 mol %) coded as SABV0 - 4 were prepared by the melt-quenching technique and analyzed for their optical, structural, physical, and radiation shielding features. The glassy (amorphous) nature of the SABV glass samples was affirmed by broad peaks of X-ray diffraction spectra. Calculated values of density and molar volume shown opposite behavior and the variation of these values were discussed as structural modifications in the glass matrix. From recorded optical absorption spectra optical band gap energy (Eg)-indirect transition, Urbach energy and optical basicity were estimated. FTIR spectra were recorded for all the samples in the range 400 cm?1 to 4000 cm?1. The FTIR absorbance spectra unveiled the SABV network structure mainly incorporating of BO3 and BO4 units. Raman spectroscopy is achieved to detect the structural changes and at higher wavenumber, B–O stretching modes in [BO3] observed with one or two NBO's. The results of ESR spectra of glasses have indicated the highly covalent environment of vanadium ions. Analysis of the photon shielding parameters of the glasses which were obtained primarily from FLUKA Monte Carlo simulations and XCOM computations revealed photon energy and glass chemical composition dependence. The mass attenuation coefficient and effective atomic number ranged from 0.2668 to 0.3385 cm2g-1 and 12.98–15.93 accordingly as the weight fraction of Sr increased from 16.06 to 26.72% in the glasses. Generally, photon shielding ability of the SABV glasses follows the trend: SABV0 > SABV1 > SABV2 > SABV3 > SABV4. The thermal neutron total cross section follows the same trend with values fluctuating between 71.9553 and 80.6268 cm?1. However, SABV1 showed superior fast neutron moderating capacity among the glasses. The present SABV glasses showed outstanding photon shielding ability compared to common shields. The prepared glasses are thus suitable candidates for radiation protection applications.  相似文献   

9.
Six different lithium bismuth boro-tungstate glasses with chemical composition 20Li2O-(20-x)Bi2O3-xWO3-60B2O3 (x = 0, 1, 2, 3, 4 and 5 mol%) were produced by the quenching method. Then, the glasses were investigated by means of their optical, mechanical, chemical durability and gamma ray shielding properties. Measured values of density and ultrasonic velocities were used to determine the elastic properties of the glasses. The optical band gap determined using the absorbance spectrum fitting (ASF) model was found to decrease under Bi2O3/WO3 substitution. The presence of BO3, BO4, BiO6, and WO4 structural groups in the glasses was confirmed by Fourier transform infrared spectroscopy (FTIR). The dissolution rate in the glass 20Li2O–15Bi2O3–5WO3–60B2O3 (LBWB5) was found to be 10 times lower than 20Li2O-20Bi2O3– 60B2O3. Mass attenuation coefficients (MAC) values of the produced glasses were determined using the MCNPX Monte Carlo code and Phy-X/PSD program. The photon attenuation parameters such as half value layer (HVL), mean free path (MFP), effective atomic number (Zeff), exposure buildup factor (EBF) and energy absorption buildup factor (EABF) were also studied. The obtained results showed that Bi2O3/WO3 substitution has a direct impact on the photon attenuation abilities of produced glasses. More specifically, HVL values increased from 0.252 × 10?2 cm for LBWB0 glass to 0.275 × 10?2 cm for LBWB5 glass. However, different trends were observed for the photon buildup factors for the produced glasses. It can be concluded that the produced glasses have promising structural, optical, and photon attenuation properties to be used for gamma shielding applications.  相似文献   

10.
《Ceramics International》2022,48(9):12829-12837
A melt quenching method was applied to fabricate a series of bismuth lithium borate glasses with a chemical composition of 65(B2O5) + 20(Bi2O3) + (15 ? x)(Li2O) + x(Nd2O3), where x = 0, 1, 2, 3, and 4 mol%. The structural changes in the fabricate glasses were studied via the Fourier transform infrared spectroscopy (FT-IR). The FT-IR spectra of the manufactured glasses indicated the transformation of the structural unit BO4. The mechanical properties of the produced glasses were evaluated via the ultrasonic measurement (longitudinal and shear velocities) and the Makishima–Mackenzie modulus calculations. Furthermore, the role of Nd2O3 in improving mechanical properties was studied theoretically and experimentally and results showed that ultrasonic velocities and elastic moduli decreased with increasing the Nd2O3 content. The Young's modulus decreased from 68.47 to 50.61 GPa as the Nd2O3 content increased from 0 to 4 mol%, respectively. The gamma ray shielding properties of the studied glass samples were evaluated using the Monte Carlo simulations between 0.223 and 2.506 MeV. The simulated data showed that the fabricated glass without Nd2O3 has the highest linear attenuation coefficient, which varied between 0.210 and 0.212 cm?1 for photons with energies ranging from 0.2234 to 2.506 MeV.  相似文献   

11.
The Li2MgTi1-x(Mg1/3Nb2/3)xO4 (0?≤x?≤?0.5) ceramics were prepared by the conventional solid-state method. The relationship among phase composition, substitution amount and microwave dielectric properties of the ceramics was symmetrically investigated. All the samples possess the rock salt structure with the space group of Fm-3m. As the x value increases from 0 to 0.5, the dielectric constant linearly decreases from 16.75 to 15.56, which can be explained by the variation of Raman spectra and infrared spectra. The Q·f value shows an upward tendency in the range of 0?≤x?≤?0.3, but it then decreases when x?>?0.3. In addition, the temperature coefficient of resonant frequency (τf) is shifted toward zero with the increasing (Mg1/3Nb2/3)4+ addition. By comparison, the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr=?16.19, Q·f =?160,000?GHz and τf =??3.14?ppm/°C.  相似文献   

12.
Chemical oxygen demand (COD) removal rates of sulfosalicylic acid (SSal) degraded by three advanced oxidation processes (AOPs): O3/UV, O3/TiO2/UV and O3/V-O/TiO2 are compared in this paper. (V = Vanadium). The results show that O3/V-O/TiO2 is the most effective process among three AOPs and the order of degradation efficiencies at different pH values is shown as O3/V-O/TiO2 > O3/TiO2/UV > O3/UV. For example, at the buffered solution of pH 6.8, the COD removal rate of O3/V-O/TiO2 reaches 70% in 30 minutes, but those of O3/TiO2/UV and O3/UV are 55% and 47% at the same conditions, respectively. Furthermore, the effect of CO3 2 ?on the COD removal rates of three AOPs shows that O3/V-O/TiO2 and O3/TiO2/UV may be considerable promising methods to overcome the limitation of the presence of radical scavenger in solution. Both the adsorption of SSal on catalysts and other oxidants (atom oxygen, photo-generated hole) must be responsible for the above result.  相似文献   

13.
The performance of the O3, O3/UV and UV/H2O2 processes for degradation of six chlorophenols (4-chlorophenol, 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol) were studied in laboratory reactors. Comparative study showed that chlorophenols can be degraded successfully by all of the methods studied, whilst traditional ozonation at high pH was determined to be the most effective method to treat chlorophenols. Even though the molar absorptivity of chlorophenols is known to be relatively high in the UV-region, the combination of UV-radiation with ozone did not accelerate the degradation of chlorophenols further. The toxicity of degradation products formed during ozonation of chlorophenols has been compared with the toxicity of pure chlorophenols utilizing Daphnia magna 24 hours test. Ozonation of chlorophenols yielded less toxic or even nontoxic products for Daphnia magna compared with parent compounds.  相似文献   

14.
We report the results of the study of the polycrystalline powder of the diamond-lonsdaleite system by X-ray diffractometry, transmission electron microscopy and UV Raman spectroscopy. The measured data of structural parameters are in good agreement with ab initio calculations. We show that the Raman spectrum is proportional to the phonon density of states of the diamond-lonsdaleite system.  相似文献   

15.
《Ceramics International》2020,46(13):21000-21007
The influence of BaO on the optical characteristics and nuclear radiation shielding properties for 60B2O3-(40-x)Li2O-xBaO: x = 0, 5, 10, 15, and 20 mol% glasses was investigated. Various optical parameters such as optical transmission and reflection loss (TOptical, RLoss), molar refraction and molar polarizability (RMolar, αMolar), optical and static dielectric coefficients and metallization criterion (εOptical, εStatic, MCriterion), and metallization property according to refractive index and optical energy gap (M(nLinear), M(EOptical)), were determined. The results confirmed that RMolar changes directly with αMolar, while TOptical changes inversely with RLoss. The mass attenuation coefficient (μ/ρ) was investigated using WinXCOM software and the results showed that all the S1–S5 glasses have good attenuation ability at 284 keV due to their high mass attenuation coefficients (μ/ρ). The highest and lowest values of μ/ρ occurred at 284 keV and 1.33 MeV respectively and varied between 0.1055 and 0.1361 cm2/g and 0.0526–0.0534 cm2/g. The linear attenuation coefficient (μ) increased with the gradual addition of BaO from glass S1→S5. The results showed that the effective atomic number (Zeff) for S1 is almost constant, while S5 possessed the highest Zeff values. The half value layer (HVL) was estimated and the effect of BaO on this parameter was analyzed. At 284 keV, the HVL values were 2.8192, 2.3847, 2.1597, 1.9687 and 1.8936 cm for S1–S5 glasses respectively. The S5 sample possessed the least HVL, and accordingly, had better attenuation capabilities than the S1–S4 samples. Therefore, lithium borate glasses with high concentration of BaO can be applied in several optical and medical applications.  相似文献   

16.
《Ceramics International》2022,48(22):33323-33331
The structural and magnetic properties of sol-gel synthesized Gd doped (x = 0.00 to 0.15) CoFe2O4 nanoparticles (NPs) have been studied. The x-ray diffraction (XRD) and FTIR spectroscopy along with Raman spectra confirmed the formation of face centered cubic inverse spinel structure. TEM images showed the NPs are well-dispersed with average particle size 30 nm. Room temperature magnetic measurement showed the value of coercivity fluctuates from 353 Oe to 1060 Oe for different % of Gd content. The maximum coercivity, saturation magnetization, magnetic moment, magnetic anisotropy, remnant magnetization found for 0.03% Gd content are 1060.19 Oe, 77.53 emu/gm, 3.29 μ, 4.11 × 104 erg/cm3, 32.38 emu/gm, respectively. The large value of coercivity indicated that the interparticle interactions and crystalline anisotropy are high. Thus CoFe2-xGdxO4 magnetic NPs might be a potential candidate for data processing, automotive and telecommunications.  相似文献   

17.
The high refractive index La2O3–TiO2–Nb2O5 glasses were prepared by containerless processing, and the glass‐forming region was determined. The refractive index showed the range from 2.20 to 2.32, and the values were much higher than those of most optical glasses. The completely miscible 30LaO3/2–(70?x)TiO2xNbO5/2 (0 ≤ ≤70) system was fabricated to study the compositional dependence of refractive index and optical transmittance. The crucial determinants of the refractive index of oxide glasses, oxygen molar volume, and electronic polarizability of oxygen ions were calculated. The principle of additivity of glass properties was suitable for the calculation of refractive index between glass and compositional oxides. All the glasses were colorless and transparent in the visible to 6.5 μm middle infrared (MIR) region. These results are useful for designing new optical glasses with high refractive index and low wavelength dispersion in wide optical window.  相似文献   

18.
Raman, UV and XRD studies have been performed to characterize the structures of differently prepared samples of poly(methyl-n-propylsilane). The results demonstrate polymorphism of this polymer between Tc and Tg. At room temperature the polymer can exist in up to four modifications which comprise one amorphous disordered phase and three more ordered modifications, differing in the interchain organization and in the silicon backbone conformations. The latter are considered to be deviant, transoid and all-anti, respectively. The number of the modifications present and relative amount of each strongly depends on the preparation method and thermal history of the sample as well as on the molecular weight.  相似文献   

19.
20.
Glass ceramics were synthetized using Cr2O3 and CaF2 as additives, and their structure, crystal growth behavior, and physicochemical properties were investigated. The results showed that an excessive amount of Cr2O3 leads to the formation of a spinel structure in the glass matrix and an increase in the number of Q3Si units. The addition of CaF2 promoted the decomposition of Q2Si into Q1Si and Q3Si. Compared with the sample with Cr2O3 alone, the addition of CaF2 helped reduce the glass transition and crystallization temperatures, forming sharper crystallization peaks. Although CaF2 increased the activation energy of crystallization, it increased the degree of crystallinity and Avrami parameter (2.019). In terms of the microstructure, the sample added with CaF2 formed a snowflake-like structure with a spinel core. An excessive amount of spinel reduced the strength of the samples. The samples (1.5Cr2O3-3.5CaF2) exhibited a maximum flexural strength of 149.85 MPa and a good chemical resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号