首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(10):14156-14165
In this report, the local structure geometry of BaTi1-xNixO3 (0.0 ≤ x ≤ 0.06) ceramics has been studied through synchrotron based x-ray-absorption spectroscopy, measured at the Ti K, Ba L3 and Ni K-edges at room temperature. The x-ray absorption near edge spectroscopy (XANES) at Ti K-edge confirms the TiO6 octahedron geometry of Ti atom due hybridization between Ti(3d)-O(2p) orbitals and signifies the non-centrosymmetric nature of BaTiO3 samples. However, Ti–O off-center displacement (non-centrosymmetric) is disturbed under the effect of Ni doping as a result of oxygen vacancies formation. More interestingly, XANES studies at Ni K-edge ensure successful substitution of Ni in BaTiO3 as Ni2+ ions. Extended x-ray absorption fine structure (EXAFS) data at Ni K-edge have been fitted to estimate pertinent local structural parameters of the Ni–O, Ni–Ba, Ni–Ti and Ni–Ni shells (viz. bond lengths and disorder parameters) and it also reveal that the structural disorders around the Ti sites in the doped BaTiO3 expand with Ni doping. The mixed-valence states of titanium ion, i.e., Ti4+ and Ti3+ in the doped samples were established with the x-ray photoelectron spectroscopy (XPS). Moreover, XPS divulges the creation of oxygen vacancies due to Ni doping in BaTiO3 matrix. The complementary information about the lattice vibration is analyzed through Raman studies that approve the softening of the transverse optical (TO) mode present at 515 cm?1. The temperature dependent ferroelectric studies affirm that the ferroelectricity vanishes in the doped samples due to the decrement in the off-center displacement between the Ti4+ and O2? ions in the TiO6 octahedral geometry. Differential thermal analysis (DTA) exhibits a ferroelectric tetragonal to para-electric cubic phase transition in the pristine as well as Ni doped BaTiO3 samples.  相似文献   

2.
《Ceramics International》2022,48(8):11304-11312
Li13.9Sr0.1Zn(GeO4+δ)4 (LSZG) materials can exhibit proton conduction by Li+/H+ ion exchange in hydrogen atmosphere. It can be used in solid oxide fuel cells (SOFCs) as an electrolyte. In this study, In3+ doped LSZG powders are synthesized by sol-gel method. X-ray diffraction, scanning electron microscopy, thermal gravimetric analyzer, and electrochemical impedance spectroscopy are used to investigate the effects of In doping on LSZG. All Li13.9-xInxSr0.1Zn(GeO4+δ)4 (LISZG, 0 ≤ x ≤ 0.3) ceramics exhibit the same phase with LSZG. The dopant of In promotes the sintering activity and Li+/H+ ion exchange rate of LSZG. The optimum doping of In is x = 0.2. At 600 °C, Li13.7In0.2Sr0.1Zn(GeO4+δ)4 (0.2LISZG) shows a proton conductivity of 0.094 S/cm under 0.9 V direct current bias voltage. In addition, the single cell based on 0.2LISZG electrolyte is prepared, and it has been demonstrated that the practical utilization of 0.2LISZG in IT-SOFCs is feasible.  相似文献   

3.
《Ceramics International》2020,46(7):9240-9248
The effects of Sr2+ substitution for Ba2+ on phase structure, microstructure, dielectric and electric properties for Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2, 3 and 4) ceramics were systematically researched. X-ray diffraction patterns show that Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2 and 3) ceramics are tetragonal tungsten bronze compound with a space group of P4bm, while the sample for x = 4 is an orthorhombic structure compound. The result can be corroborated by the analysis of Raman spectroscopy. As the Sr2+ contents increase from 0 to 3, the full width at half maximum of Raman lines of all samples increase gradually, indicating that the degree of lattice distortion increase. All tetragonal tungsten bronze ceramics exhibited a broad permittivity peaks, accompanied by frequency dispersion, indicating all samples are relaxor. The electrical properties of BSSFN ceramics were further studied by complex impedance spectroscopy. XPS spectrum shows that Fe2+ and Fe3+ coexist in Ba4-xSrxSmFe0.5Nb9.5O30 ceramics, and their proportion varies with the concentration of Sr2+.  相似文献   

4.
We report the synthesis of Sr2+ doped Ba0.9-xCa0.1SrxTi0.8Zr0.2O3 nano-ceramics by the conventional solid-state reaction method. Phase formation of single-phase orthorhombic ABO3 type structure with space group P2mm was confirmed through X-ray diffraction (XRD). The crystallite size increased with increasing doping concentration from 25.46 nm to 52.96 nm as calculated by the Scherrer formula and from 47.1 nm to 88.5 nm by the Williamson-Hall method. The lattice parameter, dislocation density, and apparent density decreased with doping, except for when x = 0.05. The porosity was found to increase up to 16.8% with increasing doping. Field emission scanning electron microscopy (FESEM) shows that samples exhibit a flake-like structure. X-ray photoelectron spectroscopy (XPS) analysis confirms that Sr-ions occupy the Ca-site, for x = 0.05, and force the Ca ions to occupy the Ti-sites. For the higher concentration of Sr, i.e. x ≥ 0.15, no more forced substitution is observed and Sr-ions occupy the Ba-site only, which decreases oxygen vacancies. Diffused rings observed in selective area electron diffraction (SAED) patterns indicate the high crystalline order of the samples. The Fourier-transformed infrared spectroscopy (FTIR) measurements show a single broad peak between 544 and 594 cm?1 for all the compositions, while two prominent peaks are observed for the composition x = 0.05 at 528 cm?1 and 592 cm?1. The Raman spectra show a shift in the most prominent peak, observed approximately 517 cm?1.  相似文献   

5.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

6.
La(1−x)SrxCo(1−y)FeyO3 samples have been prepared by sol–gel method using EDTA and citric acid as complexing agents. For the first time, Raman mappings were achieved on this type of samples especially to look for traces of Co3O4 that can be present as additional phase and not detect by XRD. The prepared samples were pure perovskites with good structural homogeneity. All these perovskites were very active for total oxidation of toluene above 200 °C. The ageing procedure used indicated good thermal stability of the samples. A strong improvement of catalytic properties was obtained substituting 30% of La3+ by Sr2+ cations and a slight additional improvement was observed substituting 20% of cobalt by iron. Hence, the optimized composition was La0.7Sr0.3Co0.8Fe0.2O3. The samples were also characterized by BET measurements, SEM and XRD techniques. Iron oxidation states were determined by Mössbauer spectroscopy. Cobalt oxidation states and the amount of O electrophilic species were analyzed from XPS achieved after treatment without re-exposition to ambient air. Textural characterization revealed a strong increase in the specific surface area and a complete change of the shape of primary particles substituting La3+ by Sr2+. The strong lowering of the temperature at conversion 20% for the La0.7Sr0.3Co(1−y)FeyO3 samples can be explained by these changes. X photoelectron spectra obtained with our procedure evidenced very high amount of O electrophilic species for the La0.7Sr0.3Co(1−y)FeyO3 samples. These species able to activate hydrocarbons could be the active sites. The partial substitution of cobalt by iron has only a limited effect on the textural properties and the amount of O species. However, Raman spectroscopy revealed a strong dynamic structural distortion by Jahn–Teller effect and Mössbauer spectroscopy evidenced the presence of Fe4+ cations in the iron containing samples. These structural modifications could improve the reactivity of the active sites explaining the better specific activity rate of the La0.7Sr0.3Co0.8Fe0.2O3 sample. Finally, an additional improvement of catalytic properties was obtained by the addition of 5% of cobalt cations in the solution of preparation. As evidenced by Raman mappings and TEM images, this method of preparation allowed to well-dispersed small Co3O4 particles that are very efficient for total oxidation of toluene with good thermal stability contrary to bulk Co3O4.  相似文献   

7.
《Ceramics International》2022,48(1):346-352
Excellent magnetoresistive materials have attracted people's attention due to their wide applications. Unfortunately, few cobalt-based perovskite oxides can demonstrate good magnetoresistance (MR) properties. Herein, a new series of SrCo1-xFexO2.9-δF0.1 (x = 0, 0.1, 0.2, and 0.3) perovskites are prepared and studied as potential magnetoresistive materials. Room temperature X-ray diffraction (XRD) and Rietveld refinement confirm the simple cubic structure of all samples. The magnetization vs temperature measurement reveals that the magnetic transition temperature goes down with the increase of Fe content, suggesting the weakened ferromagnetism caused by Fe4+-O-Co3+, Fe3+-O-Fe3+ and Fe4+-O-Fe4+ interactions. And the resistivity data of all Fe doped samples can be better fitted using Mott's variable range hopping (VRH) model, suggesting its disordering semi-conduction behavior. Astonishingly, the SrCo0.8Fe0.2O2.9-δF0.1 ceramic sample owns the giant negative magnetoresistance value of approximately 90% at 5 K in 90 kOe, which is almost the largest negative magnetoresistance in cobalt-based perovskite oxides, indicating that cobalt-based perovskites can be an underlying material system for the research of the potential material applying to magnetic sensors or other spintronic devices.  相似文献   

8.
《Ceramics International》2016,42(3):4323-4332
In the present work, we report the structural, optical and gas sensing properties of Tb3+-doped SnO2 nanoparticles. XRD results confirmed tetragonal rutile structure of both undoped and Tb3+-doped SnO2 nanoparticles which was further confirmed from Raman results. The increase of dopant concentration resulted in decrease in crystallite size which has been confirmed from XRD and TEM results. Raman spectra exhibited bands positioned at 562 and 487 cm−1 whose contribution has been found to increase with decrease in crystallite size. The shifting and broadening of Raman active bands has been explained by well-known phonon confinement model. EDS analysis inveterate presence of terbium in the doped SnO2 nanoparticles. It has been observed that 3% doped samples exhibited optimum sensor response towards ethanol vapor. The optimum operable temperature of doped samples has been reduced as compared to undoped samples. The enhanced sensor response of doped nanoparticles is attributed to the small crystallite size, high surface basicity and enhanced contribution of Raman surface vibration modes of nanoparticles.  相似文献   

9.
The topography, structure, thermal, magnetic, and electrical properties of Bi4V2?xFexO11-δ ceramics substituted with x = 0.5 and 0.7 Fe were studied. The microscope analysis showed the presence of iron-rich nanocrystals formed on the Bi-Fe-V-O grains. The X-ray diffraction studies confirmed that grains are built mostly of tetragonal Bi4V1.5Fe0.5O10.5 phase. Thermal properties analysis showed an order-disorder type γ ? γ? phase transition at a temperature of around 916 K, pronounced in samples doped with x = 0.5 Fe. The magnetic anomaly was observed in ceramics doped with x = 0.7 Fe which was assigned to Morin transition of Fe2O3. The conductivity was measured over a wide frequency range from 10 mHz to 1 MHz and at a wide temperature range from 373 to 923 K, using impedance spectroscopy. The D.C. conduction process was due to oxygen vacancies hopping while at low temperatures electron holes hopping is also possible.  相似文献   

10.
《Ceramics International》2022,48(10):13615-13625
The present work has been planned with the primary objective to study the effect of Li+ doping on photoluminescence (PL) emission intensity and temperature sensing performance of Y2Zr2O7(YZO): Er3+ phosphors. The hydrothermal method was employed to synthesize the YZO: 4Er3+, xLi+ (x = 0, 3, 5, 10 mol%) phosphors. The formation of the phase and the crystallinity of the prepared samples were examined from the XRD results. The cell parameters were estimated from Rietveld refinement. The surface morphology and elemental analysis were studied using the FESEM and EDX techniques. UV–Vis–NIR diffuse reflectance spectroscopy was utilized to find the optical band gap of the prepared samples. The Li+ doped sample exhibits better optical absorption than the sample without Li+ ions. The FTIR spectroscopy confirms the presence of the desired functional groups within the samples. XPS measurements were performed to find the bonding state of the compositions. Photoluminescence down-conversion and up-conversion measurements were carried out under 378 nm and 976 nm excitation, respectively. The optical thermometry of the prepared phosphors was investigated within the temperature range 303K–630K. The reported phosphor shows a significant amount of intensity enhancement after Li+ doping in both the down conversion and up conversion processes. In general, the charge compensation effect is used to explain this type of result. As the phosphor is already charge balanced, the phenomenon mentioned above cannot be considered. We have explained the various contributing factors responsible for the changes in intensity and correlated them with the different experimental results collected by characterizing the prepared samples. Overall, the obtained results suggest that the reported phosphor may act as multifunctional material.  相似文献   

11.
《Ceramics International》2020,46(6):7767-7773
Zinc and cadmium based cobalt ferrites ZnxCd0.375-xCo0.625Fe2O4 (where x = 0, 0.075, 0.125, 0.25) were successfully synthesized by a facile co-precipitation technique. Structural, optical and magnetic characteristics of the doped ferrites were systematically analyzed. X-ray Diffraction (XRD) pattern confirmed the formation of cubic spinel structure in all samples. Scanning electron microscopic analysis of surface morphology revealed cubic and spherical shaped ferrite particles. Fourier transform infrared (FTIR) spectroscopy confirmed the existence of metal oxygen (M − O) bonding in the prepared samples. Moreover, the prepared samples exhibited two frequency bands corresponding to phonon vibrational stretching in both octahedral and tetrahedral lattice positions. The optical properties were investigated in detail through photoluminescence (PL) spectroscopy and Raman spectroscopy. The PL spectrum confirmed the strong emission peaks in the ultraviolet to visible region of all the samples. Further, four active Raman modes, associated with cubic spinel structure are identified in all prepared samples. Finally, the magnetic characteristics are evaluated by using vibrating sample magnetometer (VSM) revealing ferrimagnetic and soft magnetic behavior of the samples. As the Zn and Cd co-doping in Co was increased, the Hc was decreased. The magnetic studies show the maximum Hc of 576 Oe for Cd doped cobalt ferrite, and maximum saturation magnetization (Ms) for Zn–Cd doped cobalt ferrite. It is envisaged that the newly prepared Zn–Cd co-doped cobalt ferrite would be appropriate for a number of important applications, for example, magnetic recording devices, sensors, actuators, high-density data storage devices, and biomedical equipments.  相似文献   

12.
Samples of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) doped with Fe were prepared and sintered at 1350°C in air or argon atmosphere. The sintered samples were characterized by SEM, XRD, and Raman spectroscopy. Raman spectroscopy and XRD were found to complement each other in phase identification; all the sintered samples were shown to possess tetragonal phase (t”) whose axial ratio (c/a) is equal to 1 in the cubic matrix. The Raman peak at 616 cm−1, in general, was seen to broaden with increase in Fe concentration for both sintering atmospheres.  相似文献   

13.
《Ceramics International》2022,48(2):1805-1813
A study of the (1-x)BiFeO3-(x)Ba1/2Na1/2TiO2.75 (BFO-BNT) solid solutions obtained using the solid state reaction method, for different molar relative concentration of Ba1/2Na1/2TiO2.75 in the 0.0 ≤ x ≤ 0.12 composition range, is presented. The crystal structure and the dielectric and ferroelectric properties are studied in detail. Results of the Rietveld refinement of the X-ray diffraction data demonstrate that the system is single phase with R3c symmetry up to x = 0.09 while for x = 0.12, a small quantity of a secondary phase with P4mm symmetry appears. Scanning electron microscopy demonstrates that BNT presence promotes grain growth resulting in larger grains. Raman spectroscopy shows that, with increasing x, some of the A and E Raman modes slightly reduce their intensity while shifting in frequency, evincing the structural changes caused by the Ba, Na, and Ti incorporation on the BFO lattice. The X-ray photoelectron spectroscopy study confirms the successful substitution and gradual structural distortion in the samples. The improvement in dielectric properties with increasing BNT concentration can be attributed to stable dipole moment formation. Compared with pure BFO ceramics, doped BFO samples exhibit remarkably enhanced ferroelectric properties.  相似文献   

14.
《Ceramics International》2022,48(22):33323-33331
The structural and magnetic properties of sol-gel synthesized Gd doped (x = 0.00 to 0.15) CoFe2O4 nanoparticles (NPs) have been studied. The x-ray diffraction (XRD) and FTIR spectroscopy along with Raman spectra confirmed the formation of face centered cubic inverse spinel structure. TEM images showed the NPs are well-dispersed with average particle size 30 nm. Room temperature magnetic measurement showed the value of coercivity fluctuates from 353 Oe to 1060 Oe for different % of Gd content. The maximum coercivity, saturation magnetization, magnetic moment, magnetic anisotropy, remnant magnetization found for 0.03% Gd content are 1060.19 Oe, 77.53 emu/gm, 3.29 μ, 4.11 × 104 erg/cm3, 32.38 emu/gm, respectively. The large value of coercivity indicated that the interparticle interactions and crystalline anisotropy are high. Thus CoFe2-xGdxO4 magnetic NPs might be a potential candidate for data processing, automotive and telecommunications.  相似文献   

15.
Fe-doped ZnO nanoneedles (NDs) were fabricated by an Ar+ ion sputtering technique operated at room temperature. The as-grown samples show both ferromagnetic and lasing properties. The saturated magnetization moment was measured from 0.307 to 0.659 emu cm−3 at the field of 10 kOe with various Fe concentrations. Intense ultraviolet random lasing emission was observed from Zn1 − x Fe x O NDs at room temperature. The X-ray photoelectron spectroscopy result reveals that the doped Fe atoms occupy the Zn sites and lead to a decrease in oxygen deficiency.  相似文献   

16.
《Ceramics International》2020,46(8):11515-11529
The Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6 & 0.8) nanomaterials were prepared via sol-gel technique. These samples were calcined at three different temperatures (T) such as 400, 450 and 500 °C/5 h. Furthermore, the X-ray diffraction (XRD) patterns of all the calcined samples revealed the single phase cubic spinel structure. The lattice constants (a = b = c) were noticed to be increasing with increase of ‘x’. The grain shape, size and distribution of x = 0.0–0.8 contents were analyzed using field emission electron microscope (FESEM). The x = 0.2 content provided higher optical band gap energy (Eg) value than the remaining contents. Furthermore, the magnetization versus magnetic field (M − H) curves indicated the superparamagnetic nature of x = 0.0–0.8 contents. The high saturation magnetization (Ms) was noticed for x = 0.4 and 0.6 contents. In addition, the distribution of cations like Ni+2, Mg+2, Zn+2, Fe+3 and Fe+2 was performed between the tetrahedral (A) and octahedral (B) sites. The frequency dependence of dielectric constant (ε′), dielectric loss (ε") and ac-electrical conductivity (σac) was investigated as a function of composition. Moreover, the temperature variation of ε′ showed the decreasing trend of dielectric transition temperature (Te) with increase of ‘x’. The high ε′ of 163.1 (at 1 MHz) was noticed at x = 0.2 content calcined at 500 °C. Using the power law fit applied to the log σac-log ω plots, the dc-electrical conductivity (σdc) and exponent (n) parameters were calculated.  相似文献   

17.
《Ceramics International》2022,48(24):36469-36477
Sr11Mo4O23(SMO) material has a double-layer perovskite superstructure, which exhibits unusual structural flexibility and oxygen ion mobility. However, the Sr11Mo4O23 cubic phase will transform into SrMoO4 tetragonal phase at 400 °C, which leads to a sharp decrease in conductivity. In order to solve this problem, Ta doped Sr11Mo4-xTaxO23-δ (SMTO, 0 ≤ x ≤ 1.25) electrolytes were synthesized by a route combining the Pechini method and solid-state reaction. The effects of acceptor-type Ta5+ doping on the structural stability, micro-scale structure and ionic conductivity of SMO are characterized by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and electrochemical impedance spectroscopy. All Sr11Mo4-xTaxO23-δ powders are single-phase and no secondary phase is detected. Moreover, the phase transition of Sr11Mo4O23 to SrMoO4 is highly inhibited by partially replacing Mo with Ta (x ≥ 0.50) during the heat treatment, and the Sr11Mo4O23 cubic phase with high conductivity may be maintained for a long time at 800 °C. The total ionic conductivity of Sr11Mo4-xTaxO23-δ samples increases with increasing the Ta concentration, and then declines at higher doping content (x = 1.25). The ionic conductivity of Sr11Mo3TaO23-δ (SMTO100) pellet is the highest, reaching 1.44 × 10?2 S/cm at 800 °C. More remarkably, the conductivity of STMO100 pellet remains at its peak during the 100 h annealing test at the temperature of 800 °C.  相似文献   

18.
《Ceramics International》2020,46(10):16524-16532
Yttrium iron garnet (YIG) nanoparticles (NPs) doped with rare earth (RE) metal ions (Y2.5Sm0.5Fe5O12, Y2.5Nd0.5Fe5O12) were successfully synthesized by sol-gel auto combustion approach. The cubic crystalline structure and morphology of the prepared garnet ferrite NPs were analyzed by X-ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM). The cubic crystalline garnet phase of the synthesized YIG, Sm-YIG and Nd-YIG samples was successfully achieved at 950 °C sintering temperature. The force constant and absorption bands were estimated by using Fourier transform infrared spectroscopy (FTIR). The doping effect of RE metal ions on the chemical states of YIG were examined by x-ray photoelectron microscopy (XPS). The valence band (from 12.63 eV to 13.22 eV), conduction band (from 10.89 eV to 11.34 eV) edges and optical bandgap values of RE doped YIG samples were calculated using UV–Vis spectroscopy and ultraviolet photo electron spectroscopy (UPS). The magnetic analysis of the prepared NPs was studied using vibrating sample magnetometer (VSM). The XPS analysis of RE doped YIG samples exhibit the existence of RE (Sm+3, Nd+3) contents on the surface of YIG ferrite by decreasing the oxygen lattice in garnet structure. The optical bandgap (from 1.74 eV to 1.88 eV) explains the semiconducting nature of the synthesized NPs. The UPS results confirm the valence band position of YIG doped samples. The saturation magnetization and remanence of RE doped garnet ferrite samples increased from 13.45 to 18.83 emu/g and 4.06–6.53 emu/g, respectively.  相似文献   

19.
《Ceramics International》2022,48(16):22726-22732
0.2CaTiO3-0.8(Li0.5Sm0.5)TiO3-xZnO(x = 0, 0.3, 0.6, 0.9, 1.2 wt%, 0.2CT-0.8LST-xZnO) with orthogonal perovskite structure were fabricated by the solid state method. The effects of ZnO additives on the microwave dielectric properties of 0.2CT-0.8LST ceramics were systematically investigated. With increasing the dopant (x) concentration, the dielectric constant (εr) and the temperature co-efficient of resonance frequency (τf) decreased, however, the Q × f values increased. The relationship between vibration mode and microwave dielectric properties was studied using Raman spectroscopy. The Q × f value of ceramics was related to the half-height width of Raman scattering. Narrower Raman scattering peaks corresponded to longer microwave energy propagation decay times and higher Q × f value. Based on X-ray photoelectron spectroscopy (XPS), the addition of Zn2+ ions limited the reduction of Ti4+ cations. The excellent dielectric properties were obtained when x = 1.2 wt% with εr = 100.25, Q × f = 6525 GHz, and τf = ?12.12 ppm/°C.  相似文献   

20.
Gd doped La0.8Sr0.2MnO3 (La0.8-xGdxSr0.2MnO3, LGSMO) ceramics were prepared by a sol-gel method. X-ray diffraction (XRD) patterns showed that all samples exhibited distorted perovskite structures, R3c. When the Gd3+ content x > 0.03, the crystal structure changed to orthorhombic, Pnma. Scanning electron microscopy (SEM) images showed that the ceramics characterize high density and grain boundary connectivity, and higher Gd3+ doping decreased the grain size from 26.72 μm to 7.42 μm. The temperature dependence of resistivity showed a transition from a low-temperature metal to a high-temperature insulator. The resistivity increased with Gd doping content, and the metal-insulator transition temperature, TP, increased first and then decreased, while the temperature coefficient of resistance (TCR) of the samples first decreased and then increased with Gd3+, and the magnetoresistance (MR) increased first and then decreased. The peak TCR at x = 0.06 was 5.18%·K?1, and MR at 0.04 was 34.57%. The electrical transport properties of the ceramics were explained based on the double exchange (DE) interaction mechanism. The obtained material may have application prospects in magnetic devices and infrared detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号