首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mullite–Mo composites of different compositions (0–100 vol.% Mo) were sintered to near theoretical density by pulse electric current sintering (PECS). The densification behaviour and the microstructure of mullite–Mo composites as a function of Mo content were studied. The addition of 10 vol.% Mo significantly enhanced the strength and toughness of monolithic mullite to 556 MPa and 2.9 MPa m1/2, respectively. SEM observations revealed the modification of discrete isolated Mo particles to continuosly interconnected network with the increase in the Mo content. Mo grains were located at the grain boundaries as well as inside the mullite grains. The addition of Mo to monolithic mullite led to a change in the fracture mode.  相似文献   

2.
《Ceramics International》2016,42(4):5171-5176
C/SiC–ZrC composites were prepared by a combining slurry process with precursor infiltration and pyrolysis, and then annealed from 1200 °C to 1800 °C. With rising annealing temperature, their mass loss rate increased, and the flexural strength and modulus decreased from 227.9 MPa to 41.3 MPa and from 35.3 GPa to 22.7 GPa, respectively. High-temperature annealing, which elevated thermal stress and strengthened interface bonding, was harmful to the flexural properties. However, it improved the ablation properties by increasing the crystallization degree of SiC matrix. The mass loss rate and linear recession rate decreased with increasing annealing temperature and those of the samples annealed at 1800 °C were 0.0074 g/s and 0.0011 mm/s respectively. Taking mechanical and ablation properties into consideration simultaneously, the optimum annealing temperature was 1600 °C.  相似文献   

3.
《Ceramics International》2016,42(4):5339-5344
Dense mullite–Mo (45 vol%) composites with homogeneous microstructure have been obtained by plasma activated sintering of a mixture of Mo and mullite precursors at a relatively low temperature (1350 °C) and a pressure of 30 MPa. The mullite precursor was synthesized by a sol–gel process followed by a heat-treatment at 1000 °C. The influence of different mullite precursors on the densification behavior and the microstructure of mullite–Mo composites has been studied. The precursor powder heat-treated at 1000 °C with only Si–Al spinel but no mullite phase shows an excellent sintering activity. Following the sintering shrinkage curves, a two-stage sintering process is designed to enhance the composite densification for further reducing the sintering temperature. The study reveals that viscous flow sintering of amorphous SiO2 at low temperatures effectively enhances the densification. Moreover, microstructure of these composites can be controlled by selecting different precursors and sintering temperatures.  相似文献   

4.
In this study, effect of process on the production of cordierite–mullite composite was studied. For this reason two different processing methods were used in the production of cordierite–mullite composites. In first process, in situ cordierite–mullite composites were produced from cordierite and mullite layers which were formed by using aqueous tape casting method. In second one, composite was produced by addition of pre-produced mullite powders (in different weight percents, 0–30) into cordierite starting powders. The results show that the addition of pre-sintered mullite powders to the cordierite slip has more effect on densification behavior and mechanical properties of composites than layered production method.  相似文献   

5.
Al2O3–SiC–C composites were prepared using tabular corundum, ball pitch and silicon carbide as the main raw materials. The carbon nanotubes (CNTs) and SiC whiskers (SiCw) were in situ synthesized and their effects on the thermo–mechanical properties of Al2O3–SiC–C composites have been studied. The experimental results indicated that the high yield of SiCw and CNTs with large aspect ratio could be obtained due to addition of Ni(NO3)2·6H2O as catalyst in the composites. The cold modulus of rupture values were increased by 24% to 7.2 MPa, and the flexural modulus was increased from 19 GPa to 24 GPa. Additionally, the hot modulus of rupture reached a maximum value of 3.6 MPa, which presented a 71% increase over that of composites without catalyst. After three thermal shock cycles, the residual cold crush strength was improved from 57.1% to 76.9%. It is believed that the enhancement in the thermo-mechanical properties of Al2O3–SiC–C composites could be attributed to the reinforcement effect of SiCw and CNTs.  相似文献   

6.
《Ceramics International》2023,49(15):24681-24689
Composites with good mechanical and tribological properties are in high demand for engineering applications. Toward this aim, the Mo–12Si–8.5B alloy with 2.5–10 wt% ZrB2 ceramic was prepared. The effects of the ZrB2 content on the microstructure, mechanical properties, and tribological behavior were thoroughly investigated. The composites exhibited reduced density and enhanced hardness and strength owing to the dispersion strengthening of ZrB2 particles, thus resulting in improved wear resistance. The frictional properties are highly dependent on the ZrB2 content and counterpart materials. When coupled with GCr15 steel, it shows much slighter abrasive and adhesive wear; therefore, it presents a more preferable anti-wear performance. The wear rate of the composite with 7.5 wt% ZrB2 showed a minimum value of 2.71 × 10−7 mm3N−1m−1.  相似文献   

7.
Twill multidirectional carbon-fiber-reinforced carbon and silicon carbide composites (i.e., C/C–SiC) were prepared via chemical vapor infiltration combined with reactive melt infiltration process. The effect of heat treatment (HT) on the microstructure and mechanical properties of C/C–SiC composites obtained by C/C preforms with different densities was thoroughly investigated. The results show that as the bulk density of C/C preforms increases, the thickness of the pyrolytic carbon (PyC) layer increases and open pore size distribution narrows, making the bulk density and residual silicon content of C/C–SiC composites decrease. Moreover, the flexural strength and tensile strength of the C/C–SiC composites were improved, which can be attributed to the increased thickness of the PyC layer. The compressive strength reduces due to the decrease of the ceramic phase content. HT improves the graphitization degree of PyC, which reduces the silicon–carbon reaction rate and thereby the content of the SiC phase. HT induces microcracks and porosity but not obviously affects the mechanical properties of C/C–SiC composites. However, the negative impact of HT can be compensated by the increased density of the C/C preforms.  相似文献   

8.
The viability of vinyltrimethoxy silane was investigated as a coupling agent for the manufacture of wood–plastic composites (WPC). The effect of silane pretreatment of the wood flour on the thermal and the dynamic mechanical properties and thermal degradation properties of the composites were studied. Moreover, the effect of organosilane on the properties of composites was compared with the effect of maleated polypropylene (MAPP). DSC studies indicated that the wood flour acts as a PP-nucleating agent, increasing the PP crystallization rate. In general, pretreatment with small amounts of silane improved this behavior in all the WPCs studied. Thermal degradation studies of the WPCs indicated that the presence of wood flour delayed degradation of the PP. Silane pretreatment of the wood flour augmented this effect, though without significantly affecting cellulose degradation. Studies of dynamic mechanical properties revealed that the wood flour (at up to 30 wt %) increased storage modulus values with respect to those of pure PP; in WPCs with a higher wood flour amount, there was no additional increase in storage modulus. Pretreatment of the wood flour with silane basically had no effect on the dynamic mechanical properties of the WPC. These results show that with small amounts of vinyltrimethoxy silane similar properties to the MAPP are reached. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
《应用陶瓷进展》2013,112(2):66-68
Abstract

The effect of aggregate size on the strength degradation of mullite-cordierite specimens subjected to thermal shock has been studied. Strength degradation of shocked specimens is shown to depend on the aggregate size, on the preshock strength of sintered specimens, and on cordierite content. Retained strength after shocking increased in specimens prepared from small aggregates owing to the higher initial strength. These specimens contained lower cordierite content as a result of the increased dissociation of cordierite brought about by decreasing the aggregate size.  相似文献   

10.
In this research, the effect of the volume percentage of diamond additive on the sintering behavior, microstructure, and mechanical properties of WC–Co was investigated. WC–Co/diamond composites with different percentages of 0%, 2.5%, 5%, 7.5%, and 10% by volume of diamond were made by spark plasma sintering at 1300°C and 40 MPa for 5 min. A small amount of phase transformation from the diamond phase to the graphite phase was observed. The amount of graphitization was low due to low temperature and short sintering time. The addition of diamond leads to a significant enhancement in both the hardness and fracture toughness of the composites, overcoming the trade-off between hardness and toughness typically observed in WC-based materials. The sample reinforced with 5% by volume of diamond showed simultaneously the highest hardness (22.9 GPa), the highest fracture toughness (22.7 MPa m1/2), and the highest flexural strength (1896 MPa). The uniform dispersion, good bonding of the superhard diamond phase with the matrix, and the fine microstructure caused the high hardness and toughness of composite. The main effective mechanisms in increasing the fracture toughness of the composite were crack deflection, bridging, and blocking of crack propagation by diamond particles.  相似文献   

11.
This study was carried out to investigate the influences of compounding process and surface treatment on calcium carbonate (CaCO3) filled polypropylene. The compounding process is discussed with reference to a twin-screw extruder and an internal mixer. The calcium carbonate filler was surface-treated with a liquid titanate coupling agent (LICA 12) and stearic acid. Composites of different weight fractions were prepared by both compounding processes, and their impact properties were evaluated. The notched Izod impact strength increased with CaCO3 content up to a maximum at about 10 vol%, and then decreased. Surface treatment of CaCO3 filler generally yielded composites of higher impact strength than untreated system. Though LICA 12 was more effective than stearic acid in modifying the filler, the low-cost stearic acid proved to be more effective when dealing with the impact properties of composites. Moreover, the composites from a Brabender Plasti-corder exhibited better gross uniformity than that from the twin-screw extruder. However, good filler dispersion and uniform microscopic morphology, as revealed by SEM microscopy, was observed in the samples from the twin-screw extruder. Polym. Compos. 25:451–460, 2004. © 2004 Society of Plastics Engineers.  相似文献   

12.
13.
《Ceramics International》2020,46(8):11622-11630
In the last decades, the production of ultra-high temperature composites with improved thermo-mechanical properties has attracted much attention. This study focuses on the effect of graphite nano-flakes addition on the microstructure, densification, and thermal characteristics of TiB2–25 vol% SiC composite. The samples were manufactured through spark plasma sintering process under the sintering conditions of 1800 °C/7 min/40 MPa. Scanning electron microscopy images demonstrated a homogenous dispersion of graphite flakes within the TiB2–SiC composite causing a betterment in the densification process. The thermal diffusivity of the specimens was gained via the laser flash technique. The addition of graphite nano-flakes as a dopant in TiB2–SiC did not change the thermal diffusivity. Consequently, the remarkable thermal conductivity of TiB2–SiC remained intact. It seems that the finer grains and more interfaces obstruct the heat flow in TiB2–SiC–graphite composites. Adding a small amount of graphite nano-flakes enhances the densification of the mentioned composite by preventing the grain growth.  相似文献   

14.
Effects of different silane coupling agents on clay surface modification were studied. Herein, functionalized superfine kaolin was compounded with starch–chitosan (SCS) to prepare starch–chitosan-functionalized superfine kaolin composite. The characterization results showed that kaolin (K) was successfully modified; the composite formed a dense intercalated structure. The glass-transition temperature (T g) was measured by differential scanning calorimetry and dynamic mechanical analysis. It decreased by 60 °C which attested the crystallinity of SCS. The results of thermogravimetric analysis showed that the fastest weight-loss temperature (Tmax) was elevated by over 50 °C for composites. Mechanical properties of the composites were explored by electronic universal testing machine. Tensile strength and elongation of composites were improved by 4.7 and 10.9 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48050.  相似文献   

15.
《Ceramics International》2016,42(8):9653-9659
Silicate-bonded porous SiC scaffolds with lamellar structures were prepared by freeze casting and liquid-phase sintering. It was found that the viscosity and solidification velocity of SiC water-based slurries with 30 vol% solid loading decreased with increasing Al2O3–MgO (AM) addition. As the AM content increased from 10 to 30 wt%, the lamellae of the sintered scaffolds became denser and the porosity decreased from 69±0.5% to 62±0.5%, while the compressive strength improved from 25±2 to 51±2 MPa. The dynamics of pressureless infiltration for an Al–12 Si–10 Mg alloy on the SiC porous scaffold was measured and the composites with lamellar-interpenetrated structures were successfully produced. Both the compressive strength and the elastic modulus of the composites increased with increasing AM content. The maximum strength reached 952±24 MPa and the highest elastic modulus about 156 GPa, respectively, in a longitudinal direction, increasing about 32% and 11% as compared with those of the composites without AM.  相似文献   

16.
This review presents the recent achievements on carbon additives incorporated in ZrB2 ceramics, improved properties, and their advancements. Monolithic ZrB2 ceramics have broad potential applications, but their critical drawbacks such as poor damage tolerance, and weak oxidation and ablation resistance confines their applicability. It is an important issue to resolve these shortages in physiochemical properties by engineering the composite ingredients and process design of the ceramic counterparts for an extensive production and applications, which are especially essential in high–tech industries and products. Carbon additives have exceptional characteristics including low density, low cost, and excellent thermo–mechanical stability. These materials have been incorporated in ZrB2 ceramics to enhance their efficiency and form practical composite ceramics. Although addition of the secondary carbonaceous phases is generally supposed to improve the mechanical properties of ZrB2 composites, it may also result in a decrease in other aspects of performance, comparing with monolithic ZrB2 ceramics. In this work, we reviewed the methods and strategies for the preparation of carbon modulated ZrB2 ceramic composites. Moreover, the advantages, disadvantages, and the productivity of the introduced composite ceramics have been explored and featured.  相似文献   

17.
Silica–titania composite aerogels were synthesized via ambient pressure drying by using water glass and titanium tetrachloride as raw materials. The influences of heat-treatment at different temperature with different heating rate on the microstructure and properties of the composite aerogels were investigated by differential thermal analyzer, Fourier transform infrared spectrometer, X-ray diffraction, nitrogen adsorption–desorption, scanning electron microscope and transmission electron microscope analysis. The results indicate that the silica–titania composite aerogels heat-treated at 250 °C exhibited highest specific surface area, pore volume and average pore diameter. When the heat-treatment temperature was higher than 450 °C, the –CH3 groups on the surface of silica–titania composite aerogels would transform into –OH groups gradually, and in the meantime, the composite aerogels network structure would be destroyed gradually and the crystallinity of TiO2 would be improved with the increase of heat-treatment temperature. Particularly, heat-treatment at temperatures above 750 °C would cause serious damage to the network structure of the composite aerogels. The adsorption/photocatalytic activity experiments showed that the composite aerogels heat-treated at 550 °C exhibit highest darkroom adsorption efficiency, and the 650 °C-heat-treated samples exhibited highest efficiency for removing the Rhodamine B from water.  相似文献   

18.
Silicon carbide green bodies with and without carbon-fibre reinforcement have been infiltrated with MoSi2–Si–X in order to produce high-temperature resistant materials. X is Cr, Ti, Al or B respectively. By adding silicon and one of these components to MoSi2 the melting point is lowered dramatically. The composites therefore could be gained by melt infiltration at max. 1600 °C. During infiltration the additives react within the infiltrated body with carbon or silicon to form high-temperature resistant carbides or silicides. Thermodynamic calculations have been performed to analyse the reactions during infiltration. The infiltration parameters have been studied with respect to the resulting microstructure and properties. By fitting the amount of additives to the quantity of carbon in the SiC-body (or vice versa) no decrease in strength could be observed up to 1500 °C. The fracture toughness can be increased by the use of high-modulus carbon fibres. The most promising X-element for a high-temperature resistant material is titanium.  相似文献   

19.
ZrB2 powder was coated with 5% ZrOC sol–gel precursor and sintered by SPS. Relative densities >98% were achieved at 1800 °C with minimal grain growth and an intergranular phase of ZrC. Carbon content in the precursor determined the type of reinforcing phase and porosity of the sintered composites. XRD, SEM and EDS studies indicated that carbon deficiency resulted in ZrO2 retention, improving ZrB2 densification with oxide particle reinforcement. Excess carbon resulted in ZrC formation as the reinforcing phase, but could yield porosity and residual carbon at grain boundaries. These two types of ZrB2 composites displayed different densification and microstructural evolution that explain their contrasting properties. In the extreme oxidative environment of oxyacetylene ablation, the composites with ZrC-C maintained superior leading edge geometry; whereas for mechanical strength, a bias towards the residual ZrO2 content was beneficial. This highlighted the sensitivity of processing carbon-precursors in the initial sol–gel process and the carbon content in ZrB2-based composite systems.  相似文献   

20.
Mullite–zirconia composites were prepared from Indian zircon flour and calcined alumina following the reaction sintering route. Zircon flour and calcined alumina with 0–4.5 mol% dysprosium oxide were attrition milled followed by isostatic pressing and sintering at 1400–1650°C for 2 h. Significant densification was achieved after dysprosia addition as an additive. The thermal expansion coefficient values were found to be reduced in the presence of dysprosia. Dysprosia helps in densification by liquid phase formation as well as by stabilisastion in tetragonal zirconia state. The thermo-mechanical and microstructural characteristics of the composites were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号