首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Ceramics International》2020,46(17):27010-27020
In this work, hierarchical flower-like Li1.2Ni0.13Co0.13Mn0.54O2 (LNCM) with exposed {010} planes assembled and double-sphere Li1.2Ni0.13Co0.13Mn0.54O2 without {010} planes as a comparison were successfully synthesized via a simple solvothermal method. The diffusion of Li+ could be enhanced in the flower-like LNCM with exposed {010} active planes, and the cathode exhibits a superior electrochemical performance especially in long-term cycling stability even at high current densities. The initial discharge capacity of this sample is 274 mA h g−1 at 0.1C (25 mA g−1), with corresponding initial coulombic efficiencies of 77%. Especially, the capacity retention reaches up to 98% at 1250 mA g−1 current density after 100 cycles. By comparing with other LNCM materials reported recently, our optimal cathode has a pretty outstanding electrochemical performance, which is promising for the next generation lithium ion batteries.  相似文献   

2.
Elemental doping for substituting lithium or oxygen sites has become a simple and effective technique to improve the electrochemical performance of layered cathode materials. Compared with single-element doping, this work presents an unprecedented contribution to the study of the effect of Na+/F co-doping on the structure and electrochemical performance of LiNi1/3Mn1/3Co1/3O2. The co-doped Li1-zNazNi1/3Mn1/3Co1/3O2-zFz (z = 0.025) and pristine LiNi1/3Co1/3Mn1/3O2 materials were synthesized via the sol–gel method using EDTA as a chelating agent. Structural analyses, carried out by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, revealed that the Na+ and F dopants were successfully incorporated into the Li and O sites, respectively. The co-doping resulted in larger Li-slab spacing, a lower degree of cation mixing, and the stabilization of the surface structure, which substantially enhanced the cycling stability and rate capability of the cathode material. The Na/F co-doped LiNi1/3Mn1/3Co1/3O2 electrode delivered an initial specific capacity of 142 mAh g−1 at a 1C rate (178 mAh g−1 at 0.1C), and it maintained 50% of its initial capacity after 1000 charge–discharge cycles at a 1C rate.  相似文献   

3.
The Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM83) cathode materials have drawn intensive attention due to the high energy density and low cost. However, Ni-rich LiNi1-x-yCoxMnyO2 still has the fatal weakness of poor cycle stability, limiting its further wide application. Bulk doping is an effective means to enhance the cycle stability, yet the electrochemical performances are very sensitive to the doping quantity. Here a facile method of co-precipitation is adopted to coat (Ni0.4Co0.2Mn0.4)1-xAlx(OH)2+x on precursor particles of NCM83. Al ions diffuse evenly in the NCM83 particles after sintering. The cells are operated at a high cut-off voltage of 4.5 V. The discharge capacity of NCM83 is 187.8 mAh g?1, and decays fast with cycles. The doped sample even exhibits a higher discharge capacity of 195 mAh g?1, and the capacity retention is improved to 83.8% after 200 cycles.  相似文献   

4.
《Ceramics International》2022,48(24):36690-36696
In order to obtain superior cathode materials for lithium-ion batteries with lower cost and higher energy density, the research of nickel-based cathode materials trend towards high Ni, low Co or no Co composition. To demonstrate the feasibility of this compositional transformation, we introduce a Co-free LiNi0.90Mn0.06Al0.04O2 (NMA) cathode material with a Ni content of 90 mol%, ranging from LiNi0.90Co0.1O2 (NC) to low Co LiNi0.90Mn0.06Co0.04O2 (NMC) composition transformation. All samples were synthesized by an organic amine coprecipitation method. The results show that the NMA cathode can provide the first discharge specific capacity of 223.1 mAh g?1 at 0.1 C and 2.5–4.3 V, although is lower than that of NC and NMC, it has a higher average discharge voltage of 47 and 17 mV, respectively. At a high voltage window ranging from 2.5 to 4.5 V, the first discharge specific capacity up to 232.1 mAh g?1, and the capacity retention rate of 100 cycles at 0.5 C is as high as 93.3%, which is much higher than the 66.9% of the NC. The dQ dV?1 and discharge curves show that the NMA phase transition is gentler and the polarization is smaller during the high-voltage charge-discharge process, which also indicates that the destructive effect of Co on the layered structure is further enhanced at high potential. In conclusion, this work provides favorable support for NMA as a next-generation candidate for high-nickel and Co-free cathode materials.  相似文献   

5.
《Ceramics International》2022,48(18):26539-26545
As well established, the morphology and architecture of electrode materials greatly contribute to the electrochemical properties. Herein, a novel structure of mesoporous coral-like manganese (III) oxide (Mn2O3) is synthesized via a facile solvothermal method coupled with the carbonization under air. When fabricated as anode electrode for lithium-ion batteries (LIBs), the as-prepared Mn2O3 exhibits good electrochemical properties, showing a high discharge capacity of 1090.4 mAh g?1 at 0.1 A g?1, and excellent rate performance of 410.4 mAh g?1 at 2 A g?1. Furthermore, it maintains the reversible discharge capacity of 1045 mAh g?1 at 0.1 A g?1 after 380 cycles, and 755 mAh g?1 at 1 A g?1 after 450 cycles. The durable cycling stability and outstanding rate performance can be attributed to its unique 3D mesoporous structure, which is favorable for increasing active area and shortening Li+ diffusion distance.  相似文献   

6.
Lithium-rich cathode materials Li1·2Mn0·54Ni0·13Co0·13O2 (LMNCO) are prepared by sol-gel method using dl-lactic acid as chelating agent. The effect of pH on crystal structures, morphologies, particle sizes, and electrochemical properties of cathode materials are studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM), nanoparticle analysis, charge–discharge tests, and electrochemical analysis. The Li1·2Mn0·54Ni0·13Co0·13O2 cathodes exhibit well-ordered layered structures consisting of hexagonal LiMO2 and monoclinic Li2MnO3 with smooth surfaces and well-crystallized particles (100–500 nm). LMNCO-7.0 exhibits smaller particle sizes than LMNCO-5.5 and LMNCO-8.5 and better electrochemical performance. The first discharge capacity and Coulombic efficiency of LMNCO-7.0 are 232.31 mAh g?1 and 73.2%, respectively. After 50 cycles, discharge capacity of LMNCO-7.0 decrease to 194.93 mAh g?1. LMNCO-7.0 cathode shows superior discharge capacity and rate performance due to its low charge transfer impedance and small average quasi-spherical particle diameter.  相似文献   

7.
《Ceramics International》2022,48(24):36490-36499
In recent years, due to the rising price of cobalt, people have been increasingly interested in LiNi0.5Mn1.5O4 (LNMO) cathode materials, and many studies researches have been carried out on the preparation and modification of LNMO. However, the codoping of Y and Ti and the choice of annealing and unannealing processes after doping are less explored. In this study, single-crystal LNMO particles and Y, Ti-doped LiNi0.45Mn1.45O4 particles were prepared by a simple sol-gel method under annealing and unannealing processes, respectively. Four samples were analyzed by X-ray powder diffraction, Raman spectra, Fourier transform infrared spectroscopy and electron paramagnetic resonance. By these means, it was found that the samples doped and not annealed had the largest amount of disordered structures and oxygen vacancies (OVs). Scanning electron microscopy showed that the doped and unannealed samples had more exposed (100) crystal planes than the other samples, and after multiple cycles, this sample had the smoothest surface morphology. Electrochemical tests show that the doped and unannealed samples exhibit excellent electrochemical performance, with a Coulombic efficiency of 93.94% in the first cycle, a specific capacity of 126.74 mAh?g?1 after 500 cycles at a rate of 1 C, and a specific capacity of 126.74 mAh?g?1 at a rate of 5 C. After 500 cycles, the specific capacity is 111.1 mAh?g?1.  相似文献   

8.
In the material of xLi2MnO3 ·(1-x) LiMO2 (0 < x < 1), the Li2MnO3 component is used to stabilize the layered LiMO2 structure. However, the electrochemical inactive Li2MnO3 makes Li-ion diffusion difficult, leading to a sluggish rate capability. In this work, Li1.3Ti1.7Al0.3(PO4)3 (LTA0.3), a NASICON-type Li-ion conductor, is applied to modified Li1.2Mn0.54Ni0.13Co0.13O2 to overcome the above shortcoming. Additionally, the Li-ion conductivity of LiTi2(PO4)3 can be improved effectively by replacing tetravalent cation Ti4+ with trivalent Al3+ at the optimal ratio. At 1C rate, the LR cathode with 3 wt% LTA0.3 delivers 200 mAh g?1 after 170 cycles and maintains 140 mAh g?1 after 500 cycles. Moreover, the modified cathode shows an enhanced rate performance of 169.7 mAh g?1 at 5C. Enhanced cycle durability and rate capability are aroused by the 3D skeletal framework of LTA0.3, which is suitable for Li-ion diffusion. The LTA0.3 coating layer displays a robust shell which not only avoids the corrosion of electrode materials but also effectively facilitates Li-ion diffusion.  相似文献   

9.
Despite Nickel-rich materials have all the advantages of high capacity, long cycle life and low cost, there is still a disadvantage that the capacity decreases rapidly as the number of cycles increases. In order to solve this problem, WO3 was uniformly coated on the surface of LiNi0.6Co0.2Mn0.2O2 cathode materials by wet coating, and its cycling performance was greatly improved with the higher capacity. The coated materials were analyzed by X-ray diffraction(XRD), Scanning electron microscope (SEM), high resolution Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy(XPS). The results showed that the coating thickness was around 3.15?nm, and some tungsten ions were doped into the lattice of the near surface area of the LiNi0.6Co0.2Mn0.2O2 material. In addition, the results of charge-discharge test showed that 1?wt%WO3 coating LiNi0.6Co0.2Mn0.2O2 had the best performance, and delivered a discharge capacity of 140 mAh g?1 (the capacity retention rate is 84.8%) in the potential interval of 2.8–4.3?V at 1?C (1?C?=?165?mA?g?1) after 200 cycles, while the bare cathode material only delivered a discharge capacity of 120 mAhg?1 (the capacity retention rate is 75%). The phenomenon indicates that the WO3 coating plays a role in inhibiting the harmful side reactions between the cathode material and the electrolyte, improving the electrochemical and structure stability of LiNi0.6Co0.2Mn0.2O2 cathode materials.  相似文献   

10.
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.  相似文献   

11.
Nanometer-sized 0.6Li2MnO3·0.4LiNi0.5Mn0.5O2 composite cathode powders are prepared directly by high-temperature flame spray pyrolysis. The precursor powders and the powders post-treated at 800 °C exhibit mixed-layered crystal structures comprising layered Li2MnO3 and layered LiNi0.5Mn0.5O2 phases. The discharge capacity of the precursor powders decreased from 193 mAh g?1 to 96 mAh g?1 by the 9th cycle, corresponding to a capacity retention of 49.7%. Post-treatment at 800 °C increases the capacity retention of the post-treated composite powders to 94.6% after 50 cycles, corresponding to a decrease in the discharge capacity from 225 to 213 mAh g?1. The post-treated composite powders that contain a high amount of the Li2MnO3 phase have a high initial discharge capacity and good cyclability.  相似文献   

12.
A series of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine composites were successfully synthesized by ultrasound dispersion method. LiNi1/3Co1/3Mn1/3O2/polytriphenylamine (5.0?wt%) composite with small and homogeneous particle size exhibited excellent electrochemical performance, which delivered an initial discharge capacity of 223.7?mAh g?1 with a capacity retention of 84.39% after 100 cycles in the voltage range of 2.5–4.5?V and at a current density of 0.2C. Moreover, an excellent specific discharge capacity of 127.3?mAh g?1 at a current density 5C indicates a superior rate performance of the LiNi1/3Co1/3Mn1/3O2/polytriphenylamine (5.0?wt%) composite. The good electrochemical performances of the composite can be attributed to the introduction of polytriphenylamine, which increased electrical conductivity, decreased charge transfer resistance and increased Li+ ion diffusion ability. These noteworthy results demonstrated that LiNi1/3Co1/3Mn1/3O2/polytriphenylamine composites might be potential cathode materials for lithium ion batteries.  相似文献   

13.
《Ceramics International》2022,48(3):3397-3403
The high-Ni layered metal oxide, LiNi0.8Co0.1Mn0.1O2 (LNCM811), has received widespread attention in the energy field because of its high specific capacity, but its large-scale applications are hindered due to severe capacity fading. Herein, a uniform and thin Li2O–B2O3–LiBr-glass (LBBrO-glass) coating was deposited on LNCM811 by a liquid-phase coating and thermal treatment method. The experimental results suggested that the LBBrO-glass coating acted as a protective layer that inhibited transition metal dissolution and side reactions, which helped improve the electrochemical properties of LNCM811. Remarkably, after 200 cycles, the 2 wt% coating (LBBrO@LNCM-2) delivered a superior capacity retention of 88.9%, while only 71.8% was obtained for the pristine material (LNCM811). The discharge capacity of LBBrO@LNCM-2 was 163.5 mAh g?1 at 5C, while it was only 139 mAh g?1 for the pristine material.  相似文献   

14.
《Ceramics International》2023,49(6):8936-8944
A major challenge in the discovery of high-energy lithium-ion batteries (LIBs) is to control the voltage stability and Li+ kinetics in lithium-rich layered oxide (LrLO) cathode materials. Although these materials can provide a higher specific capacity compared to the current industrially used cathodes, the substantial voltage decay and low Li+ diffusion during long term cycling is a serious reason for hindering their practical applications. In order to suppress the voltage decay in lithium-rich cathode materials, herein we introduce the Ti doping into Li1.2Mn0.56Ni0.17Co0.07O2 cathodes. Also, the influence of Ti doping on the crystalline internal structure, surface chemistry, cycling retention, and Li+ kinetics of Li1.2Mn0.56Ni0.17Co0.07O2 cathodes have been focused in this work. The Ti doping effectively enhances the structural/interfacial stability of the cathode and accelerates the Li+ kinetics by expanding the lattice, thereby significantly realizing its voltage/cycling stability and high-rate capability. Experimental results show that Ti-doped LrLO (1% Ti) has achieved high electrochemical kinetics as the discharge cycle retention increased from 61.58% (pristine) to 80.0% after 180 cycles at 1 C, with 150.3 mAh g?1 showing superior high-rate performance at 5C. Ex-situ XRD results confirmed the better structural stability of Ti-doped LrLO after high-rate electrochemical cycling. Our findings provide a suitable element doping strategy for regulating the voltage decay and cycle retention of LrLO, thus promoting their real-world application in future batteries.  相似文献   

15.
《Ceramics International》2020,46(14):22606-22618
This study aimed to prepare a composite coating material comprising a solid ionic conductor of lithium aluminum titanium phosphate (Li1.4Al0.4Ti1.6(PO4)3, LATP) and porous carbon through a sol-gel method. LiNi0.8Co0.1Mn0.1O2 (LNCM811) cathode material with dual-functional composite conductors (i.e., LATP@porous carbon), denoted as LATP-PC, was prepared. The dry-coating method, also called the “mechanical-fusion alloy route,” was used to modify Ni-rich LNCM811 cathode materials. X-ray diffraction (XRD), micro-Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed that the LATP ionic conductor generated herein was uniformly deposited on 3D porous carbon and served as a dual-functional composite coating on LNCM811. Furthermore, the capacity retention of LATP-PC@LNCM811 was approximately 85.57% and 80.86% after 100 cycles at −20 °C and 25 °C, respectively. By contrast, pristine LNCM811 had the capacity retention of 78% and 74.96% at −20 °C and 25 °C, respectively. Furthermore, the high-rate capability of the LATP-PC@LNCM811 material was markedly enhanced to 169.81 mAh g−1 at 10C relative to that of pristine LNCM811, which was approximately 137.67 mAh g−1. The electrochemical performance of LNCM811 was enhanced by the uniform dual-conductive composite coating. The results of the study indicate that the LATP-PC@LNCM811 composite material developed herein is a potentially promising material for future high-energy Li-ion batteries.  相似文献   

16.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   

17.
Conductive carbon has been coated on the surface of LiNi0.5Mn1.5O4 cathode material by the carbonization of sucrose for the purpose of improving the rate performance. The effect of carbon coating on the physical and electrochemical properties is discussed through the characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), cycling and rate tests. Results demonstrate that the carbon coating can greatly enhance the discharge capacity, rate capability and cycling stability of the LiNi0.5Mn1.5O4 without degrading the spinel structure. The sample modified with 1 wt.% sucrose displays the best performance. A large capacity of 130 mAh g−1 at 1 C discharge rate with a high retention of 92% after 100 cycles and a stable 114 mAh g−1 at 5 C discharge rate can be delivered. The remarkably improved rate properties of the carbon-coated samples are due to the suppression of the solid electrolyte interfacial (SEI) layer development and faster kinetics of both the Li+ diffusion and the charge transfer reaction.  相似文献   

18.
In this study, we have successfully coated the CeO2 nanoparticles (CeONPs) layer onto the surface of the Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials by a wet chemical method, which can effectively improve the structural stability of electrode. The X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) are used to determine the structure, morphology, elemental composition and electronic state of pristine and surface modified LiNi0.7Co0.2Mn0.1O2. The electrochemical testing indicates that the 0.3?mol% CeO2-coated LiNi0.7Co0.2Mn0.1O2 demonstrates excellent cycling capability and rate performance, the discharge specific capacity is 161.7?mA?h?g?1 with the capacity retention of 86.42% after 100 cycles at a current rate of 0.5?C, compared to 135.7?mA?h?g?1 and 70.64% for bare LiNi0.7Co0.2Mn0.1O2, respectively. Even at 5?C, the discharge specific capacity is still up to 137.1?mA?h?g?1 with the capacity retention of 69.0%, while the NCM only delivers 95.5?mA?h?g?1 with the capacity retention of 46.6%. The outstanding electrochemical performance is assigned to the excellent oxidation capacity of CeO2 which can oxidize Ni2+ to Ni3+ and Mn3+ to Mn4+ with the result that suppress the occurrence of Li+/Ni2+ mixing and phase transmission. Furthermore, CeO2 coating layer can protect the structure to avoid the occurrence of side reaction. The CeO2-coated composite with enhanced structural stability, cycling capability and rate performance is a promising cathode material candidate for lithium-ion battery.  相似文献   

19.
LiNi0.8Co0.2O2 cathode powders for lithium-ion batteries were prepared by a modified sol–gel method with citric acid as chelating agent and a small amount of hydroxypropyl cellulose as dispersant agent. The structure and morphology of LiNi0.8Co0.2O2 powders calcined at various temperatures for 4 h in air were characterized by means of powder X-ray diffraction analyzer, scanning electron microscope, thermogravimetric analyzer and differential thermal analyzer, and Brunauer–Emmett–Teller specific surface area analyzer. The results show that LiNi0.8Co0.2O2 powders calcined at 800 °C exhibit the best layered structure ordering and appear to have monodispersed particulates surface. In addition, the electrochemical properties of LiNi0.8Co0.2O2 powders as cathode material were investigated by the charge–discharge and cyclic voltammetry studies in a three-electrode test cell. The initial charge–discharge studies indicate that LiNi0.8Co0.2O2 cathode material obtained from the powders calcined at 800 °C shows the largest charge capacity of 231 mAh g−1 and the largest discharge capacity of 191 mAh g−1. And, the cyclic voltammetry studies indicate that Li+ insertion and extraction in LiNi0.8Co0.2O2 powders is reversible except for the first cycle.  相似文献   

20.
《Ceramics International》2016,42(13):14587-14594
A facile chemical deposition method has been adopted to prepare cerium fluoride (CeF3) surface modified LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. Structure analyses reveal that the surface of LiNi1/3Co1/3Mn1/3O2 particles is uniformly coated by CeF3. Electrochemical tests indicate that the optimal CeF3 content is 1 wt%. The 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 can deliver a discharge capacity of 107.1 mA h g−1 even at 5 C rate, while the pristine does only 57.3 mA h g−1. Compared to the pristine, the 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 exhibits the greatly enhanced capacity and cycling stability in the voltage range of 3.0–4.5 V, which suggests that the CeF3 coating has the positive effect on the high-voltage application of LiNi1/3Co1/3Mn1/3O2. According to the analyses from electrochemical impedance spectra, enhanced electrochemical performance is mainly because the stable CeF3 coating layer can prevent the HF-containing electrolyte from continuously attacking the LiNi1/3Co1/3Mn1/3O2 cathode and retard the passivating layer growth on the cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号