首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given the changes in environmental conditions in the world, photocatalytic conversion of greenhouse gases is of great interest today. Our aim was to increase the photocatalytic efficiency of BiFeO3/ZnS (p-n heterojunction photocatalyst) by varying the molar ratio of ZnS to perovskite structure of BiFeO3 using hydrothermal synthesis. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), FT-IR spectroscopy showed the small crystal size and suitable distribution of ZnS particles on the BiFeO3 structure. The results of UV-visible, and photoluminescence (PL) spectroscopy analyses showed the good behavior of p-n heterostructure in absorption of visible light and lowering electron-hole recombination. The best visible light photocatalytic efficiency of CO2 reduction, 24.8%, was obtained by an equimolar ratio of BiFeO3/ZnS.  相似文献   

2.
BACKGROUND: This research investigated the effect of platinum (Pt) on the reactivity of tungsten oxide (WO3) for the visible light photocatalytic oxidation of dyes. RESULTS: Nanocrystalline tungsten oxide (WO3) photocatalysts were synthesised by a sol‐gel process and employed for the photocatalytic degradation of Methyl Orange under visible light. For comparison commercial bulk WO3 materials were also studied for the same reaction. These materials were fully characterised using X‐ray diffraction (XRD), UV‐visible diffuse reflection spectroscopy and transmission electron microscopy (TEM). The photocatalytic oxidation of iso‐propanol was used as a model reaction to follow the concomitant reduction of molecular oxygen. No reactions occured in the absence of platinum, which is an essential co‐catalyst for the multi‐electron reduction of oxygen. The platinised WO3 catalysts were stable for multiple oxidation–reduction cycles. The results from the catalytic activity measurements showed that platinised nanocrystalline WO3 is a superior oxidation photocatalyst when compared with bulk WO3. Methyl Orange was completely decolourised in 4 h. CONCLUSIONS: The enhanced performance of nanocrystalline Pt‐WO3 is attributed to improved charge separation in the nanosized photocatalyst. Platinum is an essential co‐catalyst to reduce oxygen. This photocatalyst could be applied to the treatment of organic pollutants in wastewater, with the advantage of using visible light compared with the widely studied TiO2, which requires UV light. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
《Ceramics International》2016,42(8):9796-9803
The improved photocatalyst carbon-doped WO3/TiO2 mixed oxide was synthesized in this study using the sol–gel method. The catalyst was thoroughly characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy, N2 adsorption desorption analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic efficiency of the prepared materials was evaluated with respect to the degradation of sodium diclofenac (DCF) in a batch reactor irradiated under simulated solar light. The progress of the degradation process of the drug was evaluated by high-performance liquid chromatography (HPLC), whereas mineralization was monitored by total organic carbon analysis (TOC) and ion chromatography (IC). The results of the photocatalytic evaluation indicated that the modified catalyst with tungsten and carbon (TWC) exhibited higher photocatalytic activity than TiO2 (T) and WO3/TiO2 (TW) in the degradation and mineralization of diclofenac (TWC>TW>T). Complete degradation of diclofenac occurred at 250 kJ m−2 of accumulated energy, whereas 82.4% mineralization at 400 kJ m−2 was achieved using the photocatalytic system WO3/TiO2-C. The improvement in the photocatalytic activity was attributed to the synergistic effect between carbon and WO3 incorporated into the TiO2 structure.  相似文献   

4.
In this work, a series of titania-supported NiO and CdO materials were synthesized by a modified sol-gel process. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). The activities of titania-supported NiO and CdO photocatalysts for photocatalytic degradation of Remazole Red F3B (RR) dye, under simulated sunlight, were investigated. The photocatalytic mineralization of an RR dye solution over various NiO-x/TiO2 and CdO-x/TiO2 photocatalysts under simulated sunlight was investigated. It was worthy noticing that the photocatalytic activity of titania improved using the prepared catalysts. The prepared TiO2, NiO-5/TiO2, and CdO-2/TiO2 photocatalysts exhibited higher photocatalytic activity under simulated sunlight than did commercial TiO2. The prepared photocatalysts were stable after photocatalytic degradation of the dye. The observed photocatalytic mineralization of the dye was 51 and 71% over NiO-10/TiO2 and CdO-2/TiO2 after 180 min of irradiation, respectively. Juxtaposing a p-NiO-5/TiO2 semiconductor provided a potential approach for decreasing charge recombination. The prepared photocatalystsNiO-5/TiO2 and CdO-2/TiO2 are promising composites for the solar detoxification of textile wastewater.  相似文献   

5.
《Ceramics International》2015,41(4):5903-5908
In this work, WO3-reduced graphene oxide (RGO) nanocomposite was synthesized via a simple one-pot hydrothermal method. The synthesized nanocomposite was characterized by SEM, XRD, EDX, UV–vis spectroscopy, N2 adsorption/desorption, photocurrent response, electrochemical impedance spectroscopy and Raman spectroscopy. The superior contact between WO3 and RGO sheets in the nanocomposite facilitates the photocatalytic degradation of methylene blue and evolution of oxygen. The cause of the enhanced photocatalytic performance could ascribe to the highly facilitated electron transport by the synergistic effect between WO3 and RGO sheets, as well as suppressing the electron hole pair recombination in the nanocomposite.  相似文献   

6.
《Ceramics International》2022,48(4):4965-4976
Over the past few years, semiconductor materials (especially bismuth tungstate) exhibiting unique environment purification and energy conversion capacities arouse huge attention as impacted by issues of environmental pollution and energy shortage, whereas its application is restricted by the problems of high carrier recombination rate and unsatisfactory degradation efficiency. In this study, Eu:Bi2WO6 nanostructures containing Eu ions of different concentrations were synthesized with a chemical solution method, and CdS was generated on the surface of Eu:Bi2WO6 nanostructures in situ epitaxial to synthesize the Eu:Bi2WO6/CdS composites. The effects of Eu doping concentration on the crystal structure, chemical composition, local structure, optical properties and visible-light photocatalytic properties exhibited by Eu:Bi2WO6/CdS nanostructures were studied more specifically, and the Eu doping behavior on the improvement mechanisms for optical and photocatalytic performance exhibited by Eu:Bi2WO6/CdS nanostructures was clarified. The robust PL emission peak at about 390 nm and weak emission peak at nearly 450 nm are attributed to the exciton emission and defect state of Bi2WO6/CdS nanostructure, respectively. As indicated from the mechanism insights, the reasonable introduction of Eu3+ could alter the band gap of the photocatalyst, and the epitaxial CdS could decrease the recombination probability of electron and hole in the Bi2WO6/CdS, while improving the photocatalytic activity. This study supplies new occasions for rational excogitation and better comprehending of atomic-scale complicated structures for applications in numerous fields (e.g., energy and environmental protection).  相似文献   

7.
To make better use of solar light, a new Bi2WO6/Cu1.8Se photocatalyst active to visible and near‐infrared light has been synthesized by a facile hydrothermal method. The composites were characterized by X‐ray diffractometry (XRD), scanning electron microscopy (SEM), UV‐vis diffuse reflectance spectroscopy (DRS), and photoluminescene (PL). The photocatalytic activities of Bi2WO6/Cu1.8Se are evaluated by degrading Congo red solution and hydrogen generation from water. It was found that the molar percentage of Cu1.8Se had great effects on the morphology and photocatalytic property of the Bi2WO6/Cu1.8Se heterojunctions, and the composite with suitable molar amount of Cu1.8Se exhibits much enhanced photocatalytic activity for Congo red degradation under visible and near‐infrared light irradiation and for hydrogen generation under visible light compared to Bi2WO6. The significant improvement photocatalytic activity of the composite could be attributed to its good light absorption, suitable band gap structure, and effective separation of photogenerated electron‐hole pairs of Bi2WO6/Cu1.8Se heterojunction. This work presents an efficient multifunction photocatalyst owning the activity both for water splitting under visible light and for organic contaminants decomposition under visible‐near‐infrared light.  相似文献   

8.
《Ceramics International》2015,41(4):5600-5606
In this paper, WO3 nanorods (NRs)/g-C3N4 composite photocatalysts were constructed by assembling WO3 NRs with sheet-like g-C3N4. The as-synthesized photocatalysts were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activity of the photocatalysts was evaluated by degradation of Rhodamine B (RhB) under simulated sunlight irradiation. Compared to pristine WO3 NRs and g-C3N4, WO3 NRs/g-C3N4 composites exhibit greatly enhanced photocatalytic activities. The enhanced performance of WO3 NRs/g-C3N4 composite photocatalysts was mainly ascribed to the synergistic effect between WO3 NRs and g-C3N4, which improved the photogenerated carrier separation. A possible degradation mechanism of RhB over the WO3 NRs/g-C3N4 composite photocatalysts was proposed.  相似文献   

9.
Highly efficient Eu-TiO2/graphene composites were synthesized by a two-step method such as sol-gel and hydrothermal process. The synthesized photocatalysts were characterized by XRD, TEM, XPS, UV–vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results confirmed that anatase Eu-TiO2 nanoparticles with average 10 nm sizes were successfully deposited on two-dimensional graphene sheets. The UV–visible spectroscopy showed a red shift in the absorption edge of TiO2 due to Eu doping and graphene incorporation. Moreover, effective charge separation in Eu-TiO2/graphene composites was confirmed by PL emission spectroscopy compared to TiO2/graphene, Eu-TiO2 and pure TiO2. The photocatalytic activity for H2 evolution over prepared composites was studied under visible light irradiation (λ ≥ 400 nm). The results demonstrate that photocatalytic performance of the photocatalysts for hydrogen production increases with increasing doping concentration of Eu upto 2 at%. However, further increase in doping content above this optimum level has decreased the performance of photocatalyst. The enhanced photocatalytic performance for H2 evolution is attributed to extended visible light absorption, suppressed recombination of electron-hole pairs due to synergistic effects of Eu and graphene.  相似文献   

10.
Photocatalytic degradation of harmful organic matter is a feasible and environmentally friendly method. Bi2WO6 has become a hotspot of photocatalysts because of its unique layered structure and visible light response. In the present study, Sn doping was adopted to modified Bi2WO6 by hydrothermal method. The Sn-doped Bi2WO6 photocatalysts were characterized by XRD, SEM, TEM, BET, XPS, PL, and DRS, respectively. The results show that Sn-doped Bi2WO6 shows three-dimensional (3D) flower-like morphology, which is composed of two-dimensional (2D) nanosheets. Sn4+ ions enter into the Bi2WO6 lattice, producing a degree of Bi2WO6 lattice distortion, which is in favor of reducing the recombination of photogenerated electrons and holes. Moreover, the specific surface area of Bi2WO6 is significantly increased after doping, which is beneficial to providing more active sites. The photocatalytic results show that 2%Sn-Bi2WO6 exhibits the highest photocatalytic activity. After 60 min of irradiation, the photocatalytic degradation degree of methylene blue (MB) increases from 80.6% for pure Bi2WO6 to 92.0% for 2%Sn-Bi2WO6. The first-order reaction rate constant of 2%Sn-Bi2WO6 is 0.030 min−1, which is 1.7 times than that of pure Bi2WO6.  相似文献   

11.
《Ceramics International》2017,43(16):13447-13460
A series of novel ZnO/Ag/Ag2WO4/AgI nanocomposites have been successfully synthesized by a facile ultrasonic-irradiation method and their photocatalytic activities were explored under visible-light illumination using rhodamine B. The synthesized nanocomposites were characterized by various techniques to determine their structural, morphological, and electronical properties. Effect of the amount of AgI, as visible-light sensitizer, on the photocatalytic activity was studied and it was found that the nanocomposite with 30% of AgI displayed the highest photocatalytic activity. Activity of this photocatalyst was almost 150, 17.8, and 55.1 times greater than those of the ZnO, ZnO/Ag/Ag2WO4, and ZnO/AgI photocatalysts, respectively. Besides, the importance of active species during the degradation process was explored and it was shown that superoxide anion radical has major role in the photodegradation reaction. Moreover, the outstanding performance of the best nanocomposite in degradations of three more dye pollutants was confirmed. Finally, a cascade mechanism was proposed for the greatly enhanced activity of the nanocomposites in degradation reactions.  相似文献   

12.
Photocatalytic degradation is an ambitious and cost effective technique used for decontamination and sanitization of the waste polluted water of environment. Hydrothermal method is used to synthesis the carbon coupled WO3 nanoparticles with different concentrations of carbon (0.0, 0.2, 0.5, 1.0 and 2.0%) from precursor Na2WO4·2H2O with glucose and nitric acid. Synthesized nanoparticles were characterized by SEM, EDX, XRD, UV–Vis, and PL to study morphology, and particle size, composition, structural and optical properties, respectively. SEM revealed that morphology of the carbon coupled WO3 nanoparticles becomes spherical by increasing amount of coupled carbon atoms. The average grain size of the carbon doped nanoparticles is found to be 15–20 nm. Furthermore, size of nanoparticles affect the band gap of synthesized nanoparticles as well. It has also been observed that carbon coupled WO3 nanoparticles effectively take part in photo degradation due to reduction of electron–hole recombination rate.  相似文献   

13.
We fabricated novel ternary nanocomposites through integration of C-dots (carbon dots), BiOCl, and nanosheets of graphitic carbon nitride (g-C3N4 nanosheets) by a cost-effective route. The fabricated photocatalysts were subsequently characterized by XRD, EDX, TEM, HRTEM, XPS, FT-IR, UV-vis DRS, TGA, BET, and PL methods to gain their structure, purity, morphology, optical, textural, and thermal properties. In addition, the degradation intermediates were identified by gas chromatography-mass spectroscopy (GC-MS). Photocatalytic performance of the synthesized samples was studied by photodegradations of three cationic (RhB, MB, and fuchsine), one anionic (MO) dyes, one colorless (phenol) pollutant and removal of an inorganic pollutant (Cr(VI)) under visible light. It was revealed that the ternary nanocomposite with loading 20% of BiOCl illustrated superlative performances in the selected photocatalytic reactions compared with the corresponding bare and binary photocatalysts. Visible-light photocatalytic activity of the g-C3N4 nanosheets/CDs/BiOCl (20%) nanocomposite was 42.6, 27.8, 24.8, 20.2, and 15.9 times higher than the pure g-C3N4 for removal of RhB, MB, MO, fuchsine, and phenol, respectively. Likewise, the ternary photocatalyst showed enhanced activity of 15.3 times relative to the g-C3N4 in photoreduction of Cr(VI). Moreover, the ternary nanocomposite exhibited excellent chemical stability and recyclability after five cycles. Finally, the mechanism for improved photocatalytic performance was discussed based on the band potential positions.  相似文献   

14.
《Ceramics International》2022,48(20):30294-30306
In this paper, a novel g-C3N4/2 wt% SnS2 nanocomposite was successfully synthesized using an in-situ growth of SnS2 on g-C3N4. X-ray diffraction (XRD), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectrometer were used to characterize the photocatalysts. Exploring adsorption behavior, as an importatnt stage during photocatalytic reactions, is of great importance. Hence, both adsorption and photocatalytic performance of the synthesized photocatalysts have been investigated in detail. The adsorption isotherm fittings exhibited that Freundlich and Langmuir-Freundlich models can be applied to the methylene blue (MB) adsorption on the photocatalysts, indicating surface heterogeneity should be considered. A pseudo-second-order model was fitted to explore the adsorption kinetics. According to the observed redshift in the Fourier transform infrared spectroscopy (FTIR) result of g-C3N4/SnS2 nanocomposite, π-π interaction was dominant during MB adsorption. Also, a slight redshift and significant PL intensity reduction in g-C3N4/SnS2 nanocomposite led to 96% photocatalytic efficiency after 180 min under visible light radiation. The kinetics of photodegradation over g-C3N4/SnS2 was about 9 and 3 times higher than those of g-C3N4 and SnS2 photocatalysts, respectively. The superoxide and hydroxyl radicals were the main reactive species in the photocatalytic degradation with a Z-scheme charge transfer mechanism. The g-C3N4/SnS2 nanocomposite was found to be remarkably stable after three consecutive cycles of MB degradation.  相似文献   

15.
《Ceramics International》2016,42(6):7014-7022
Highly ordered TiO2 and WO3–TiO2 nanotubes were prepared by one-step electrochemical anodizing method and cobalt has been successfully deposited on these nanotubes by photo-assisted deposition process. The morphology, crystal structure, elemental composition and light absorption capability of samples were characterized by field emission scanning electron microscope, X-ray diffraction, energy dispersive X-ray spectrometer and ultraviolet–visible spectroscopy methods. All cobalt loaded samples show an appearance of red shift relative to the unloaded samples. The degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of these novel visible-light-responsive photocatalysts. Results showed that the photocatalytic activity of bare WO3–TiO2 samples is higher than that with undoped TiO2 sample. Compared with unmodified TiO2 and WO3–TiO2, the Co/TiO2 and Co/WO3–TiO2 samples exhibited enhanced photocatalytic activity in the degradation of methylene blue. Kinetic research showed that the reaction rate constant of Co/WO3–TiO2 is approximately 2.26 times higher than the apparent reaction rate constant of bare WO3–TiO2. This work provides an insight into designing and synthesizing new TiO2–WO3 nanotubes-based hybrid materials for effective visible light-activated photocatalysis. The catalysts prepared in this study exhibit industrially relevant interests due to the low cost and high photocatalytic activity.  相似文献   

16.
In this study, ZnO nanoparticles were successfully deposited on the surface of ZnMgAl–CO3–LDHs microspheres to form ZnO/ZnMgAl–CO3–LDHs heterojunction photocatalysts by coprecipitation process. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis diffuse reflectance spectroscopy. The results show that ZnO nanoparticles with diameters about 10–80 nm are tightly grown on the nanosheets of the ZnMgAl–CO3–LDHs microspheres. Compared with the pristine ZnMgAl–CO3–LDHs microspheres and pure ZnO, the photocatalytic activity of the heterojunction ZnO/ZnMgAl–CO3–LDHs photocatalyst is significantly enhanced towards the degradation of phenol under UV light irradiation. The enhancement of the photocatalytic activity of the heterojunction catalysts can be ascribed to their improved light absorption property and the lower recombination rate of the photoexcited electrons and holes during the photocatalytic reaction. The optimal molar ratio of ZnO/ZnMgAl–CO3–LDHs for the photocatalysis is 3. The heterojunction photocatalyst ZnO/ZnMgAl–CO3–LDHs may be a promising photocatalyst for future application in water treatment due to its excellent performance in degradation of phenol.  相似文献   

17.
《Ceramics International》2020,46(11):19084-19091
In this work, a holmium oxide (Ho2O3/CNT) photocatalysts were successfully synthesized through a MOF assisted route for the first time. The effects of the morphology and purity on the photocatalytic behavior of the products, were investigated by determining various physicochemical properties. The Ho2O3/CNT nanocomposite was systematically analyzed by powder X-ray diffraction (P-XRD), transmission electron microscopy (TEM), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies. The Ho2O3 derived from a MOF assisted synthetic route using Ho(NO3)3·5H2O and terephthalic acid with a 1:1 M ratio at a temperature of 750 °C for 3 h prove the most advantageous, 98% degradation of 20 mg/L aqueous tetracycline pollutant was observed within 60 min. The elevated photocatalytic activity was mainly attributable to the unique synthetic route, improved crystallinity, wide UV-light absorption rate and excellent adsorption capabilities of CNT, as well as enhanced oxygen deficiency. The photocatalytic results confirm that the Ho2O3/CNT nanocomposite is an efficient photocatalyst for the degradation of toxic tetracycline pollutant and is thus suitable for use in environmental remediation.  相似文献   

18.
Ag2WO4/g-C3N4 composites with different Ag2WO4 concentration and calcination temperature were synthesized via a mixing and heating approach. Various techniques were used to investigate the characters of the as-prepared samples, such as thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence spectroscopy. The degradation of rhodamine B (20 ppm) under visible light was performed to investigate the photocatalytic activity of Ag2WO4/g-C3N4 composites. Results indicate that the Ag2WO4/g-C3N4 is actually Ag/Ag2WO4/g-C3N4 ternary system. 7.5 wt% Ag2WO4/g-C3N4 prepared at 300 °C presented the best photocatalytic performance in rhodamine B degradation. The degradation rate reaches 0.0679 min?1, which is 3.25 times higher than the value of pure g-C3N4. The enhanced activity is attributed to the synergetic effect of Ag2WO4, g-C3N4 and metal Ag. Additionally, cycling experiments also proved that the Ag2WO4/g-C3N4 photocatalyst has good stability.  相似文献   

19.
《Ceramics International》2016,42(12):13411-13420
The quest for cost-effective environmental remediation has motivated the research for highly efficient and stable photocatalysts capable of degrading pollutants under visible-light illumination. Ag-based visible-light-responsive photocatalysts demonstrate alluring properties and applications in the elimination of organic pollutants in wastewater, however they often suffer from inherent photo-corrosion under illumination. Herein, we report the facile solution-phase synthesis of silver carbonate (Ag2CO3) microcrystals with varied morphological features in different solvents. The size and morphology of Ag2CO3 materials can be tuned on the basis of varying types and ratios of solvents. The specific synthetic method allows the orientation controllable growth of Ag2CO3 microcrystals with variable length-to-diameter ratios, with the surface harvesting more solar energy, and the photocatalyst suppressing the electron-hole recombination. The enhancement in both the photocatalytic activity and photostability of Ag2CO3 catalysts is evident when AgNO3 and NaHCO3 are employed as stabilizers. Operating in the presence of 0.02 M stabilizer, the photocatalyst demonstrates highly efficient and robust degradation performance of higher than 95% in 5 successive times towards typical organic dye rhodamine B (RhB). Active holes and reactive oxygen-containing superhydroxyl radicals (·O2) are determined by trapping experiments to be the main species responsible for improved photocatalytic performance. This work provides new insights into the development of high-performance, recyclable Ag-based photocatalytic materials for energy and environmental applications.  相似文献   

20.

To improve the photocatalytic activity of Bi2WO6, ZIF-8 was successfully introduced with the in-situ growth for the first time. The addition of ZIF-8 effectively inhibited the recombination of photogenerated electron–hole pairs with further improved electron utilization efficiency. The superoxide anion, .O2?, generated, greatly improved the photocatalytic activity. The performance of Bi2WO6/ZIF-8 in the photodegradation of tetracycline (TC) was studied under different conditions, including the proportions of ZIF-8, the dosage of catalyst, and the concentration of TC. The results indicated that 10 mg of B/Z/5/1 offered the best photocatalytic activity under UV light, achieving 97.8% degradation of TC (20 mg/L) within 80 min. The measured rate constant (k) for TC degradation was almost 3 times that of pure Bi2WO6. The effects of pH, HA, and inorganic anions on the degradation of TC were also studied for the simulated real water. Further, B/Z/5/1 could be reutilized up to five cycles without reduction of the catalysis performance. Therefore, the Bi2WO6/ZIF-8 heterojunction composite material can be utilized as an efficient photocatalyst for remediation of environmental pollution.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号