首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(22):33143-33150
Bi3+ ions can regulate and control the fluorescence of a phosphor by transferring energy to the activating agent or occupying different luminescent centers, which is important for modifying phosphors and revealing fluorescence mechanisms. As a base material, Sr3Al2O5Cl2 has three types of Sr sites (Sr 1, Sr 2, and Sr 3) that may be occupied by Bi3+ ions (Sr2+ has a similar radius to Bi3+). Herein, we successfully synthesized a series of Sr3Al2O5Cl2:x%Bi3+ phosphors using the high-temperature solid-state method and determined a two-site-occupying emission mechanism. X-ray diffraction patterns indicated that the samples were synthesized well, and Rietveld refinement results provided their structural information. Photoluminescence spectra showed 490 nm (λex = 345 nm) and 556 nm (λex = 376 nm) emission peaks, which might arise from different luminescent centers. The concentration quenching study, peak separation analysis, fluorescence lifetime spectra, and diffuse reflection spectra indicated that the Bi3+ ions occupied two of the three Sr sites. Calculations of relative system energies and distortion index proved that the occupation only occurred in the Sr 1 and Sr 3 sites, and crystal splitting analysis determined that Sr 1 site generated 490 nm emission light and Sr 3 site generated 556 nm emission light. The charge compensator and flux were added to enhance the fluorescence intensity of the phosphor, and 5% K+ along with 1% BaF2 is the optimal dosage. Finally, the SrAlSiN3:Eu2+, BaMgAl10O17:Eu2+, and optimized Sr3Al2O5Cl2:5%Bi3+ phosphors were combined as a luminous layer and a warm-white light-emitting diode was realized; the color rendering indices were 84.3, 85.8, 86.4, and 86.2 under working currents of 20, 30, 40, and 50 mA, respectively.  相似文献   

2.
《Ceramics International》2022,48(20):29770-29781
The substituted (Ca2+/Cu2+), and co-substituted (Cu2+/Zn2+), (Cu2+/Sr2+), and (Sr2+/Mn2+) β-tricalcium phosphate (β-TCP)-based Ca3-2x(MˊMˊˊ)x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+) solid solutions have been synthesized using solid-state route. The powder X-ray diffraction study shows the formation of β-TCP-type structure as the main phase in all solid solutions. The crystal structures and chemical compositions were approved using Fourier-transform infrared (FT-IR) absorption spectra and energy-dispersive X-ray spectrometry (EDX) data, respectively. The unit cell parameters and volume of as-synthesized samples directly depend on the radius of the incorporated ions. The limits of the single-phase solid solutions were found based on the possible occupation of the crystal sites in β-TCP structure. For the divalent ions with small radii, such as Cu2+ or Zn2+, the limit composition was found as Ca2.5710.429–xMˊˊx(PO4)2 for Mˊ and Mˊˊ – Cu2+ and Zn2+. The enlargement of the unit cell by incorporation of Sr2+ allows to extend the limit of solid solutions up to Ca2.5Sr0.5–xx(PO4)2 for Mˊ – Cu2+ or Mn2+. The antibacterial properties were studied on 4 bacteria (S. aureus, P. aeruginosa, E. coli and E. faecalis) and 1 fungus (C. albicans). It has been showed that co-doped Ca2.5Sr0.25Cu0.25(PO4)2 sample exhibits the highest antimicrobial activity resulting in 92%, 96% and 96% inhibition growth rate for S. aureus, P. aeruginosa and E. faecalis, respectively. The antimicrobial properties are strongly related to the occupation of the crystal sites in the β-TCP structure by doping ions.  相似文献   

3.
Sr9Mg1.5(PO4)7:Eu2+ has recently been reported as a promising blue light-excited orange–yellow phosphor that can be used in white LED device. Here, Ce3+-codoping is found to be an effective strategy to improve the luminescence performance of Sr9Mg1.5(PO4)7:Eu2+ phosphor. The coexistence of Eu2+ and Eu3+ ions has been verified via photoluminescence spectral analysis. The reduction of Eu3+ to Eu2+ in Sr9Mg1.5(PO4)7 lattice cannot be completed in a reducing atmosphere, but can be promoted through codoping with Ce3+ ions to a great extent, which finally increase the effective concentration of Eu2+ in the crystal lattice. The Eu3+−Eu2+ reduction mechanism is analyzed using a charge compensation model. This work not only achieves enhanced luminescence of the Sr9Mg1.5(PO4)7:Eu2+ phosphor by codoping with Ce3+ ions, but also provides new insights into the design of Ce3+/Eu2+ codoped luminescent materials.  相似文献   

4.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

5.
Firing temperature and gas pressure effect of synthesizing Sr2Si5N8:Eu2+ were investigated. The emission intensity is positively correlated with the firing temperature under 0.1 and 0.5 MPa gas pressure. The Sr2Si5N8:Eu2+ with the highest emission intensity was found at 1700°C and 1980°C under 0.1 and 0.5 MPa gas pressure, respectively. Although the maximum emission intensity of Sr2Si5N8:Eu2+ obtained under 0.5 MPa gas pressure condition is higher than that under 0.1 MPa. The Sr2Si5N8:Eu2+ synthesized under 0.5 MPa gas pressure in the temperature range from 1600°C to 1800°C have lower emission intensities than that synthesized under 0.1 MPa indicating that the melting of Sr3N2 is an important step for the formation of Sr2Si5N8:Eu2+. Moreover, the Sr2Si5N8:Eu2+ undergoes phase transition into SrSi6N8:Eu2+ completely after elongating the heating duration to 6 h at 1980°C under 0.5 MPa gas pressure. The same feature was observed under 0.1 MPa gas pressure after firing 8 h at 1750°C. Different heating durations led to different degrees of phase transition.  相似文献   

6.
Rare earth ions’ site occupation is significant for studying luminescence properties by changing the host composition. The (Ba1-xSrx)9Lu2Si6O24:Eu2+ (x = 0-0.4) tunable-color phosphors were synthesized via a high temperature solid-state reaction. With the Sr2+ ions concentration increase, the luminescent color could be tuned from blue to green. This phenomenon is discussed in detail through the ions occupation in the host lattice. More importantly, the temperature-dependent luminescence of (Ba1-xSrx)9Lu2Si6O24:Eu2+ phosphors was investigated and exhibited excellent thermal stability. Furthermore, white LED device has been fabricated using (Ba1-xSrx)9Lu2Si6O24:Eu2+ phosphor mixed with commercial red phosphor Sr2Si5N8:Eu3+ combined with a 370 nm UV-chip. This device showed correlated color temperature (CCT) of 5125 K and high color render index (CRI) of 91. This phosphor will be a promising candidate as a tunable-color phosphor for UV-based white LEDs.  相似文献   

7.
《Ceramics International》2020,46(13):21448-21460
Tetragonal structured Sr3AlO4F is highly strained as reported from its global instability index estimation. Moreover, our results of X-ray photoelectron spectroscopy (XPS) also ascertained that the structure of Sr3AlO4F is highly strained with oxygen vacancies. Herein, aliovalent substitutions of divalent Sr ions with trivalent Ln (Ln = Gd/Y) ions were carried out to improve the stability of Sr3AlO4F lattice, which subsequently enhanced the photoluminescence in a series of Sr2.9-3x/2LnxAlO4F: 0.1Eu3+ phosphors. All the phosphors showed intense red-orange emission (5D07F1,2) at excitation with UV and near-UV light. The critical concentrations of Gd3+ and Y3+ up to which the Eu3+ emission intensities increased linearly were observed to be x = 0.09 and x = 0.07, respectively. Nevertheless, further enhancement in the Eu3+ luminescence of the optimized phosphors was realized by subsequently annealing in low oxygen atmospheres. The enhancement in oxygen deficiency during the post-annealing in Ar or vacuum led the energy transfer (O2--Eu3+) to a greater extent which afterward increased the Eu3+ luminescence. The optimized Sr2.765Gd0.09AlO4F: 0.1Eu3+ and Sr2.795Y0.07AlO4F: 0.1Eu3+ phosphors showed high red color purity (~99%), as well as CIE coordinates of (0.62, 0.38), indicated that these phosphors could be appropriate red-emitting components for making flexible optical films for many lighting devices. Therefore, flexible polydimethylsiloxane based films were also fabricated using optimized Sr2.765Gd0.09AlO4F: 0.1Eu3+ phosphor. The electroluminescence of a flexible PDMS-phosphor composite film showed an intense and pure red color with good thermal stability suggesting its suitability in flexible lighting and display devices.  相似文献   

8.
Eu2+, Mn2+ doped Sr1.7Mg0.3SiO4 phosphors were prepared by high temperature solid-state reaction method. Their luminescence properties were studied. The emission spectra of Eu2+ singly doped Sr1.7Mg0.3SiO4 consist of a blue band (455 nm) and a green band (550 nm). The relative intensities of two emissions varied with Eu2+ concentration. Eu2+ and Mn2+ co-doped Sr1.7Mg0.3SiO4 phosphors emit three color lights and present whitish color. The blue (455 nm) and green (550 nm) emissions are attributed to the transitions of Eu2+, while the red (670 nm) emission is originated from the transition of Mn2+ ion. The results indicate the energy transfer from Eu2+ to Mn2+. The mechanism of the energy transfer is resonance-type energy transfer due to the spectral overlap between the emission of Eu2+and the absorption of Mn2+.  相似文献   

9.
Thermal quenching of phosphor is an important challenge for its practical application in phosphor-converted white light-emitting diodes (pc-WLEDs) and it usually becomes aggravated with the increase of activator concentration. Conversely, this work finds the thermal quenching of Eu2+ emission at 490 nm in Sr4Al14O25:Eu2+ does not follow this in the temperature range of 300 to 480 K, and the rate of it is even slowed down as the concentration of Eu2+ increases. However, at the same time, the experiment on three heating-cooling cycles of Sr4Al14O25:Eu2+ reveals that the thermal degradation of Eu2+ emission becomes improved. Once Eu2+ ions are doped into Sr4Al14O25, they will prefer substituting for the 10- and 7-coordinated strontium sites Sr1 and Sr2, respectively. The emission centers Eu1 and Eu2, therefore, appear. The abnormal phenomenon is perhaps partly due to the enhanced energy transfer from the emission center Eu1 at 407 nm to the one Eu2 at 490 nm. It is also found interesting that the introduction of AlN can enhance the emission of Sr4Al14O25:Eu2+ without leading to the deterioration of thermal degradation. In the end, a prototype of pc-WLED was fabricated with Sr4Al14O25:Eu2+ to demonstrate the application of white lighting. This work is not only beneficial to the understanding of the relationship between concentration and thermal quenching, but also conducive to the design of the heavily doped phosphor for WLEDs with better resistance to thermal quenching.  相似文献   

10.
《Ceramics International》2017,43(17):15107-15114
A series of eulytite-type Sr3Y1-x(PO4)3:xEu3+ (x = 0–0.13) and Sr3-yY(PO4)3:yEu2+ (y = 0–0.10) phosphors were successfully synthesized via gel-combustion and subsequent calcination in O2 and Ar/H2 atmospheres at 1250 °C, respectively. Detailed crystal structure analysis via Rietveld refinement showed that the phosphors were crystallized in the cubic system (space group I-43d, No. 220), in which the Eu3+ and Eu2+ activators reside at the Y3+ and Sr2+ sites, respectively. The trivalent Eu3+ ions (CN = 6) exhibited typical narrow-band luminescence via intra-4f6 transitions, with the red emission at ~ 615 nm being dominant (5D07F2 transition, FWHM = 15.9 ± 0.2 nm). The divalent Eu2+ ions (CN = 6 and 9) showed broad-band luminescence ranging from light-blue to blue via 4f65d1 → 4f7 transitions (FWHM = 115 ± 2 nm). The optimal Eu3+ and Eu2+ concentrations were determined to be 10 at% (x = 0.10) and 7 at% (y = 0.07), respectively, and the mechanisms of concentration quenching were discussed. The excitation/emission properties, fluorescence decay kinetics, CIE chromaticity, and particularly the rarely addressed thermal stability of the phosphors were investigated in detail.  相似文献   

11.
An unexpected spectrum blue shift of the yellow emission was observed for solid solution phosphors Ba2?xSrxMg(PO4)2:Eu2+ (x = 0–1.5), when bigger ions Ba2+ were substituted by smaller ions Sr2+ in Ba2Mg(PO4)2 lattices. The solid solution phosphors were prepared by a solid‐state reaction to clarify the local sites environment of activators Eu2+ and tune the anomalous long‐wavelength yellow emission. BaSrMg(PO4)2 phase was identified to be isostructural with Ba2Mg(PO4)2 by Rietveld refinements. DFT calculation and photoluminescence show that the activator ions Eu2+ in BaSrMg(PO4)2 occupy Sr2+ and Ba2+ sites at an equal probability and both generate an anomalous yellow emission. The yellow emission from Ba2?xSrxMg(PO4)2:Eu2+ was gradually blue shift with increasing Sr2+ substitution concentration x from 0.1 to 1. Such unusual blue shift is interpreted based on the evolution of crystal structure parameters due to Sr2+ substitution, and subsequently, a site environmental expansion mechanism is proposed. The proposed mechanism could serve as a general model to reveal the underlying factors for spectrum shift caused by cation substitution and contribute to design new solid solution phosphors.  相似文献   

12.
《Ceramics International》2021,47(21):30156-30163
A new Eu2+, Dy3+: Sr2B5O9Cl phosphor with long persistence was synthesized in a reducing atmosphere by a solid-state reaction process. The pure-phase phosphor was obtained by calcination at 900 °C. The introduction of Eu2+ into the lattice of the matrix resulted in a broad blue emission centered at 423 nm, which was due to the characteristic 4f65d1 to 4f7 energy transfer of Eu2+ ions. Both Eu-doped and Dy/Eu-codoped phosphors displayed afterglow behaviors due to the electron traps generated by the incorporation of tri-valanced rare earth cations into the original Sr lattice sites. The afterglow of Eu2+: Sr2B5O9Cl and Eu2+, Dy3+: Sr2B5O9Cl phosphors showed standard double exponential decay behaviors, and the Eu2+/Dy3+ co-doped sample demonstrated better afterglow properties than Eu2+-doped one. A longer lifetime for the electrons was confirmed after the afterglow decay curve simulation. Based on the analysis of thermally stimulated luminescence (TSL), the difference in afterglow was attributed to the different trap concentrations induced by the Dy3+ (Eu3+) doping in the Sr2B5O9Cl matrix.  相似文献   

13.
《Ceramics International》2016,42(16):18324-18332
A series of Eu2+-activated novel phosphor-silicate apatite Sr3LaNa(PO4)2SiO4 phosphors were synthesized by solid-state reaction. The X-ray diffraction (XRD) and Rietveld refinement, diffuse reflectance spectra, luminescent spectra, decay curves and thermal quenching properties were applied to characterize the obtained phosphors. The XRD result revealed that all the samples possessed only a single phase with hexagonal structure and the doping of Eu2+ ions were successfully incorporated into the crystal lattice. The reflectance spectra showed an obvious red-shift of the wavelength from 400 to 700 nm with increasing Eu2+ ion concentration. The three different crystallographic sites of Eu2+ ions had been confirmed by their lifetimes. All the samples exhibited broad absorption bands from 200 to 450 nm, revealing the phosphor-silicate phosphor interesting for application in the near-UV used phosphor-converted LED chips. These results suggested that the Eu2+-activated phosphor-silicate Sr3LaNa(PO4)2SiO4 phosphors have the potential for near-UV pumped white-light-emitting diodes (w-LEDs).  相似文献   

14.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   

15.
A series of novel red emission phosphors Sr3Lu1-x(VO4)3:xEu3+(= 0.007, 0.009, 0.02, 0.04, 0.06) were synthesized successfully by traditional high-temperature solid-state reaction. The results of X-ray diffraction (XRD) reveal the doped Eu3+ ions have replaced the lattice sites of Lu3+ ions. The diffuse reflectance spectra illustrate the energy gap of Sr3Lu(VO4)3 host is 3.61 eV. The room-temperature steady-state fluorescence spectra show that these phosphors can be effectively pumped by the charge-transfer band (CTB) of the host in near ultraviolet (NUV) spectral region and then produce strong and pure red emission at 615 nm originated from 5D0 → 7F2 electric dipole transition of Eu3+. The Commission Internationale de L’Eclairage (CIE) coordinates of Sr3Lu0.96(VO4)3:0.04Eu3+ are (x = 0.65, y = 0.35), which are very close to the red standard of National Television Standards Committee NTSC (0.67, 0.33). The fabricated warm white-light-emitting diodes (LED) demonstrate high color-rendering index Ra as 93. The results imply the red-emitting Sr3Lu(VO4)3:Eu3+ phosphors could be potentially utilized in the fields of solid-state lighting.  相似文献   

16.
《Ceramics International》2020,46(8):11994-12000
Eu3+-activated Sr9LiMg(PO4)7 phosphors, which presented bright red emissions mainly from the 5D07F2 transition of Eu3+ ions upon the near-ultraviolet excitation, were successfully synthesized in ambient atmosphere. The crystal structure, phase constitution, photoluminescent behaviors, decay time, internal quantum efficiency and thermal stability of the resultant phosphors were investigated in detail. Eu3+ ions are found to tend to occupy multiple Sr2+ sites, which are 7, 8 and 10-coordinated. The optimal doping concentration is 7 mol% and the electrical multipolar interaction contributed to the non-radiative energy transfer between Eu3+ ions in Sr9LiMg(PO4)7 host lattices. Temperature-dependent PL spectra indicated Sr9LiMg(PO4)7: Eu3+ possess excellent emission and color stability at elevated temperature. Fabricated single-chromatic LED prototype emit bright red light under 20 mA bias current, which demonstrates that Sr9LiMg(PO4)7: Eu3+ phosphor is of great potential as converted phosphor in NUV LED application.  相似文献   

17.
《Ceramics International》2023,49(10):15402-15412
A series of Ca2GdNbO6: xSm3+ (0.01 ≤ x ≤ 0.15) and Ca2GdNbO6: 0.03Sm3+, yEu3+ (0.05 ≤ y ≤ 0.3) phosphors were synthesized by the traditional solid-state sintering process. XRD and the corresponding refinement results indicate that both Sm3+ and Eu3+ ions are doped successfully into the lattice of Ca2GdNbO6. The micro-morphology shows that the elements of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor are evenly distributed in the sample, and the particle size is about 2 μm. The optical properties and fluorescence lifetime of Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors were detailedly studied. The emission peak at 5D07F2 (614 nm) is the strongest and emits red light under 406 nm excitation. The increase of Eu3+ concentration causes the energy transfers from Sm3+ to Eu3+ ions, and the transfer efficiency reaches 28.6%. Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor has a quantum yield of about 82.7%, and thermal quenching activation energy is of 0.312 eV. The color coordinate (0.646, 0.352) of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphors is located in the red area. The LED device fabricated based on the above phosphor emit bright white light, and CCT = 5400 K, Ra = 92.8. The results present that Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors potentially find use in the future.  相似文献   

18.
In this experiment, an original three-dimensional (3D) cubic of europium (Eu) 3+/cuprous oxide (Cu2O) with clover-like face-centered nanostructures (Eu3+/Cu2O CLFNs) was successfully synthesized to determine nevirapine (C15H14N4O), using electrochemical methods. The surface morphology of the Ns was correspondingly identified through different techniques, including energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In this sense, the synergistic influence of the Eu3+/Cu2O CLFNs enhanced the electrocatalytic capability of the electrode via a modified glassy carbon (GC) and raised the active site. Employing various approaches, the modified electrode was then analyzed through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Moreover, kinetic parameters and electrochemical ones were estimated by means of voltammetric methods. For the determination of nevirapine applying the Eu3+/Cu2O CLFNs/GC electrode (GCE), differential pulse voltammetry (DPV) was further utilized. Under optimized conditions, the range of linear responses was between 0.01 and 750.0 μM with the limit of detection (LOD) of 3.6 nM, whereas the recommended sensor sensitivity was equal to 0.1244 μA/μM. The response time of approximately 3.5 min and the reproducibility (inter- and intra-electrode reproducibility of 2.26% and 1.51%, respectively) were subsequently achieved. It was concluded that sensors have been thus far exploited to determine nevirapine in real samples with favorable outcomes, indicating that electrocatalysis modifier can be assumed as one of appropriate catalysts.  相似文献   

19.
Chemical stability of phosphors is critical to the efficiency and lifetime of the white light-emitting diodes. Therefore, many strategies have been adopted to improve the stability of phosphors. However, it is still lack of report on the improvement of thermal stability and hydrolysis resistance of phosphors by a single layer coating. Due to the high transmittance and high chemical inertness of graphene, it was coated on the surface of Sr2Si5N8:Eu2+ phosphor by chemical vapor deposition, aiming to improve its thermal stability and hydrolysis resistance. The chemical composition and microstructure of the coating were characterized and analyzed. A nanoscale carbon layer was attached on the surface of Sr2Si5N8:Eu2+ phosphor particles in an amorphous state. In coated Sr2Si5N8:Eu2+ phosphor, the oxidation degree of Eu2+ to Eu3+ was significantly suppressed. At the same time, the surface of Sr2Si5N8:Eu2+ particle turned from hydrophilic to hydrophobic after carbon coating, and consequently the hydrolysis resistance of Sr2Si5N8:Eu2+ phosphor was greatly improved. After tests at 85 °C and 85% humidity for 200 h, the carbon coated Sr2Si5N8:Eu2+ phosphor still maintained about 95% of its initial luminous intensity as compared with 35% of the uncoated. By observing the in-situ microstructure evolution of coated phosphor in air-water vapor environment, remained presence of the carbon layer even at 500 °C explained the excellent chemical stability of carbon coated Sr2Si5N8:Eu2+ phosphor in complex environment. These results indicate that a nanoscale carbon layer can be used to provide superior thermal stability and hydrolysis resistance of (oxy) nitrides phosphors.  相似文献   

20.
We have successfully synthesized single-phase wurtzite hexagonal ZnO:Eu3+ (1, 5 and 10 mol %) nanoparticles via facile co-precipitation method. The samples have been characterized by powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), fourier transform infrared (FTIR) and UV–visible spectroscopy. Change in optical band gap is explained by invoking the existence 4f electronic states of Eu3+ in the band gap of ZnO. Photocatalytic performance of these samples for degradation of methyl orange (MO), rhodamine B (Rh B) and picric acid (PA) under UV illumination is found to be 3–3.5 times higher than pure ZnO. However, 5 mol% doping exhibited the highest catalytic efficiency. This sample was also highly sensitive and selective for PA, and the limit of detection was: 1.790 μM, 1.140 μM and 1.751 μM for 1, 5 and 10 mol% Eu3+ doped ZnO samples respectively. Finally, all samples behave weak ferromagnetically at room temperature, but a systematic increase in the ferromagnetic-like response is noticed with Eu3+ concentration, despite finding no evidence of secondary magnetic phases; EuO and Eu2O3 from XRD measurements. Conceivably, the observed ferromagnetic order is attributed to defect induced f7– ferromagnetism. Indeed, low concentration of Eu3+ dopant is found to be more significant, as reported by different groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号