首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A very sensitive electrochemical sensor has been developed by modification of glassy carbon electrode (GCE) with nanoparticles of bismuth (III) oxide (Bi2O3) and multi-walled carbon nanotubes (MWCNTs). The sensor was applied for the determination of cilostazol, cyclic nucleotide phosphodiesterase inhibitors in pharmaceutical formulation and human plasma. The voltammetric responses were compared with those obtained at bare GCE under optimum conditions. The cyclic and square-wave voltammograms of cilostazol showed 3.3 and 4.9 times enhancement in the oxidation peak current at MWCNTs–Bi2O3/GCE as compared to a bare GCE. Bi2O3–MWCNTs/GCE showed a linear response for cilostazol in standard solution over the concentration range of 0.8–13 μg mL−1 with the detection limit 0.76 μg mL−1, whereas human plasma over the concentration range 0.8–12.5 μg mL−1 with the detection limit 0.66 μg mL−1.  相似文献   

2.
The manufacturing and electrochemical characterisation of an array of 20 boron doped nanocrystalline diamond (BNCD) microband electrodes for use in a poly(dimethylsiloxane) (PDMS) based microfluidic system are described. The electrodes were fabricated by plasma etching of a silicon oxide- and BNCD thin film coated silicon wafer and the resulting surface structured silicon wafer was subsequently bonded to the PDMS so that the BNCD microband electrodes were located within the PDMS microchannel. The electrochemical performance of the BNCD electrodes was studied and the electrodes were found to exhibit significantly better stability than previously employed gold microband arrays.  相似文献   

3.
Halloysite nanotubes/polypyrrole (HNTs/PPy) nanocomposites with coaxial tubular morphology for use as electrode materials for supercapacitors were synthesized by the in situ chemical oxidative polymerization method based on self-assembled monolayer amine-functionalized HNTs. The HNTs/PPy coaxial tubular nanocomposites were characterized with transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), electrical conductivity measurement at different temperatures, cyclic voltammetry (CV), and galvanostatic charge-discharge measurements. The coaxial tubular nanocomposites showed their greatest conductivity at room temperature and a weak temperature dependence of the conductivity from 298 K to 423 K. A maximum discharge capacity of 522 F/g after correcting for the weight percent of the PPy phase at a current density of 5 mA cm−2 in a 0.5 M Na2SO4 electrolyte could be achieved in a half-cell setup configuration for the HNTs/PPy composites electrode, suggesting its potential application in electrode materials for electrochemical capacitors.  相似文献   

4.
This review intends to present different aspects concerning clay/polymer nanocomposites produced by heterophase polymerization in aqueous media. This paper highlights the ability of miniemulsion polymerization to produce clay/polymer nanoparticles with tailored nanostructures. Indeed, this polymerization route enables the synthesis of composite nanoparticles with the clay platelets located either on the surface of the polymer particle or embedded inside the polymer particle. A focus is given on the influence of these nanostructures on the properties of the final material through a direct comparison of the composites obtained after water evaporation from these structured nanoparticles. Indeed, the film obtained from the film forming process of these nanoparticles present significantly different nanostructures and exhibit totally different mechanical behaviours and water uptakes. By comparing experimental results and modeling approaches, it is demonstrated that their properties are clearly related to the clay dispersion and contacts. It is also evidenced that the main drawback of miniemulsion from the coating application point of view, is the large water uptake promoted by the surfactant presence whose localization is strongly influenced by nanostructuration. This stresses the need for the further development of surfactant free miniemulsion polymerization using advantageously the clay presence to stabilize the emulsion.  相似文献   

5.
《Ceramics International》2017,43(3):3284-3291
Silver-cobalt ferrite nanocomposites (Ag-CoFe2O4) were synthesized through wet ferritization process and self-propagating combustion method. The structure, morphology, surface chemistry and magnetic properties of the nanocomposites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). X-ray diffraction patterns confirmed the formation of CoFe2O4 and Ag nanoparticles with cubic symmetry. The average crystallite size of CoFe2O4 by wet ferritization ranged between 60 Å and 87 Å; for those obtained by self-propagating combustion was in the range 232–290 Å. SEM micrographs revealed different morphological features of nanocomposites. Ag-CoFe2O4 obtained by wet ferritization exhibited typical superparamagnetic behaviour. The antimicrobial and anti-biofilm properties of all silver-cobalt ferrites were evaluated. The results revealed that the Ag-CoFe2O4 nanocomposites exhibited good microbicidal and anti-biofilm features.  相似文献   

6.
Journal of Applied Electrochemistry - A simple, one-pot, and short-duration synthetic procedure utilizing two nitrogen sources has been demonstrated to prepare nitrogen-doped reduced graphene oxide...  相似文献   

7.
Journal of Applied Electrochemistry - A glassy carbon electrode was modified with a 2D-networked nanostructure composed of graphitic carbon nitride and tungsten oxide nanoparticles (2D-g-C3N4/WO3)...  相似文献   

8.
This study presents the successful synthesis of praseodymium oxide, Pr6O11 and hausmannite manganese oxide, Mn3O4 nanoparticles, along with a novel synthesis of (Pr6O11/Mn3O4) nanocomposites by employing the hydrothermal route followed by post thermal annealing. X-ray Diffraction, Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray characterization techniques are being adapted to analyze the physical characteristics of all the synthesized materials. XRD results reveal the crystalline nature of the synthesized materials. FE-SEM results display the irregular nanograins of Mn3O4 and a regular network of interconnected Pr6O11 nanoparticles. Nitrogen adsorption/desorption tests confirm the mesoporous nature of all the synthesized electrode materials. The Pr6O11/Mn3O4 ??2 electrode material exhibits an outstanding specific capacitance of 794.58?F/g at a current density of 0.5?A/g, as compared to the 521.24?F/g for the Pr6O11 electrode material. These investigations provide an easy and efficient method to develop nanocomposites (Pr6O11/Mn3O4) with better electrochemical characteristics, as electrode materials for supercapacitor applications.  相似文献   

9.
10.
The present study emulates a one-pot facile synthesis of selenium-enriched CoSe nanotube using a chemical bath deposition (CBD) procedure. Schematic incorporation of 3D Ni foam current collectors as substrates for the growth of CoSe–Se nanotubes helped us achieve a binder-less thin film coating. The controlled synthesis of CoSe–Se nanotube was carried out by optimizing the temperature and time of the deposition. CoSe–Se nanotubes were grown on a porous Ni foam substrate using lithium chloride as a shape directing agent. The study found that the one dimensional structure of the nanotubes with porous nature results in an uninterrupted network of electroactive sites. Due to the superior conductivity, the as-fabricated material exhibited excellent rate capability and a higher degree of electrolyte ion diffusion across the CoSe–Se crystal structure. The CoSe–Se@Ni foam electrodes exhibited a specific capacitance of 1750.81 F g?1 at 1 A g?1. The electrode exhibited excellent cycling stability and showed a capacitance retention of 95% after 4000 charge-discharge cycles. Finally, an asymmetric supercapacitor (ASC) device was fabricated with the as-synthesized CoSe–Se@Ni foam electrode as the cathode, activated carbon@Ni foam electrode as the anode, and a thin filter paper separator soaked in 1 M aqueous KOH electrolyte solution. The ASC device showed a specific capacitance value of 106.73 F g?1 at 0.5 A g?1, and achieved an energy density of 37.94 Wh kg?1 at a power density of 475.30 W kg?1. The ASC device was utilized in an extended potential window of 1.6 V. The fabricated device displayed exceptional cycling stability with a capacitance retention of 93% after 5000 charge-discharge cycles.  相似文献   

11.
In recent years, there has been an increasing interest in the development of plant-based nanoparticles due to their numerous benefits over conventional physio-chemical methods, including sustainability and environmental safety. Green synthesis, a process that produces safe and sustainable goods without the use of harsh chemicals or other harmful processes, is gaining popularity. The current study focuses on the green synthesis of copper oxide nanoparticles using Piper nigrum leaf extracts, their characterization, and applications. The synthesis of nanoparticles was confirmed by changes in colour, further endorsed by UV–visible spectroscopy. Copper oxide (CuO) nanoparticles were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). CuO nanoparticle sizes ranged between 58.23 and 69.89 nm and were spherical in shape. FTIR results indicated a functional group capped on the nanoparticle surface. The antibacterial activity of the copper oxide nanoparticles was tested, and they exhibited the significant decrease in bacterial concentration and the largest zone of inhibition, making them an efficient disinfectant. Antimicrobial activity against Bacillus subtilis and Escherichia coli was observed. Furthermore, the synthesized CuO nanoparticles exhibited a high affinity for safranin dyes and demonstrated maximum removal efficiency. This makes them an effective agent for removing dyes in wastewater from industries such as clothing manufacturing. Safranin dye was successfully removed with an efficiency of 78% using nanoparticles. In conclusion, the green synthesis of copper oxide nanoparticles using plant extracts presents an eco-friendly and sustainable approach for producing nanoparticles with a wide range of potential applications.  相似文献   

12.
The recognition that polymer/clay nanocomposites impart improved barrier properties related to gas transport has prompted much discussion and research into the mechanism of this improvement. The plate like morphology of the clays was the attribute first seized upon as the dominant factor in improving barrier properties. A simple two dimensional model was proposed in which the clay plates acted as barriers to the gas diffusion thus making the effective path length longer. This model has been given the name of the “Tortuous Path Model”. Many polymer nanocomposites appear to follow this model simple model reasonably well. There are, however, many examples that deviate substantially from the model. A more complex model involving a constrained polymer region was proposed to accommodate the deviations from the “Tortuous Path Model”. This model fits much of the data in the literature but includes variables that have not been measured. These variables include the size and shape of the constrained region and the magnitude of the diffusion coefficient in the constrained region. This paper reports Atomic Force Microscopy work that has directly measured the size and shape of the constrained polymer region. The measured size of the constrained region leads to a method of identifying the diffusion coefficient for the constrained region from experimental permeability data. The implications for wider applications of the model are discussed.  相似文献   

13.
In this paper, we compare two procedures for the synthesis of palladium (Pd)/polycarbonate (PC) nanocomposites as well as their morphological, optical, thermal and electrical properties. Pd nanoclusters were produced by the reduction of palladium chloride using a variation of Brust's method. Discrete Pd nanoclusters of ∼15 nm size were formed in the absence of PC in the reaction mixture (ex situ method) while agglomeration of Pd nanoclusters was noticed in the presence of PC in the reaction mixture (in situ method). Fourier transform infrared spectroscopy (FTIR) suggests nanoparticle-polymer interactions and polymer conformational changes in the in situ nanocomposite films. Even after having the same Pd content, the ex situ nanocomposites films were found to transmit more light than the in situ nanocomposites. The glass transition temperature (Tg), decreased by ∼16 °C for both the ex situ and in situ samples. Thermogravimetric analysis (TGA) indicated that the presence of Pd nanoclusters significantly improved the thermal stability of the nanocomposites, as evidenced by the enhanced onset of degradation by ∼20 °C and ∼40 °C for the in situ and ex situ nanocomposites, respectively. The electrical conductivity measurement shows a dramatic difference between these nanocomposites with a significantly higher value for the in situ nanocomposite (resistivity = 2.1 × 105 Ωm) compared to the ex situ nanocomposite (resistivity = 7.2 × 1013 Ωm).  相似文献   

14.
《Ceramics International》2017,43(7):5450-5456
The Ag-TiO2/r-GO nanocomposite was synthesized via a facile one-pot solvothermal method. X-ray diffraction (XRD), Transmission electron microscopy (TEM),High resolution transmission electron microscopy(HRTEM), UV–vis diffuse reflectance spectroscopy (DRS), Fourier transformed infrared spectroscopy (FT-IR), Photoluminescence (PL) and N2 adsorption-desorption were used for the characterization of prepared samples. The adsorbent and photocatalytic performance of prepared samples were evaluated by remove of Rh B dyes and reduction of CO2. Both the adsorbent and photocatalytic ability of all the Ag-TiO2/r-GO samples were much higher than pure hollow TiO2. The excellent adsorbent capacity can be attributed to the large BET surface area and the enhanced photocatalytic activity can be assigned to the predominant properties of graphene and the localized surface plasmon(LSPR) effect of Ag nanoparticles.  相似文献   

15.
MXenes, due to their exceptional properties, are tagged as materials of future in the field of two dimensional (2D) materials. Niobium carbide (Nb2C) is an important member of MXene family having vast application in the field of lithium ion batteries and supercapacitors. However, its applications in the field of sensing have not been explored yet. This research work reports the synthesis and application of Nb2C/ZnS nanocomposite for the sensing of dopamine (DA) for the first time. The etching of Nb2C from parent MAX phase (Nb2AlC) was performed at 55 °C. The application of Nb2C electrode for the electrochemical sensing of DA was employed through differential pulse voltammetry (DPV). Zinc sulphide (ZnS) nanoparticles were synthesized hydrothermally to enhance the electrochemical properties of Nb2C. The characterization of these prepared samples was done with the help XRD, SEM, EDS, and of FTIR spectroscopy. The MXene-ZnS nanocomposite modified glassy carbon electrode (GCE) proved to be a very effective electrode material to detect dopamine electrochemically with a wide linear detection range of 0.09–0.82 mM, a very low detection limit of 1.39 μM and excellent sensitivity of 12.1 μAμM-1. The modified glassy carbon electrode also proved to be exceptionally selective towards dopamine in the presence of interfering agents like ascorbic acid, citric acid and glucose.  相似文献   

16.
Poly-crystalline In2O3-ZnGa2O4 nanocomposites were successfully synthesized by hydrothermal method with a mixed solution of In, Ga and Zn nitrates with equal mole ratio (In: Ga: Zn=1:1:1) and the ammonia was used as the precipitant. The effects of hydrothermal temperature and pH value of the mixed solution on the properties of the nanocomposites were investigated. The microstructure of the prepared In2O3-ZnGa2O4 nanocomposites was characterized by SEM and TEM, respectively. The growth mechanisms of In2O3-ZnGa2O4 nanocomposites were also preliminarily discussed in this study. Results reveal that the IGZO ceramics prepared by In2O3-ZnGa2O4 nanocomposites own a high relative density of 99.5% and low resistivity of 1.2?mΩ·cm, which can be applied to the preparation of IGZO thin film with superior performance.  相似文献   

17.
《Ceramics International》2023,49(15):25113-25120
An advanced version of the solution combustion synthesis (SCS) method was developed to prepare iron oxide (IO) nanoparticles, through controlling the agglomeration, size and shape of nanoparticles by assisting a cationic surfactant, “cetyltrimethylammonium bromide (CTAB)” and ethanol. Various IO nanoparticles were prepared in the presence of different CTAB:ethanol molar compositions of 0:0, 0.27:0, 0.55:0, 0.27:17.1, 0.55:17.1 and 0.82:17.1. The morphological evolution from agglomerated-shape particles to the well-dispersed as well as the size- and shape-controlled particles depended directly on the CTAB:ethanol molar composition. A shift from ferromagnetic behavior to superparamagnetic was observed by the application of CTAB along with ethanol, where the lowest blocking temperature (Tb, 60 K), highest saturation magnetization (Ms, 83.5 emu g−1), zero coercivity and remanance magnetization were revealed for the particles prepared by CTAB:ethanol molar compositions of 0.55:17.1. These particles showed an acceptable specific absorption rate (SAR) value (320 W g−1) as well as no obvious hemolytic and cytotoxic effects. This work provides new insights into advancing the SCS method and thus controlling the morphology, size and shape of metal oxide nanoparticles.  相似文献   

18.
Although the electrochemical reduction of CO2 at a copper electrode produces hydrocarbons, the activity for the conversion of CO2 is significantly reduced after several tens of minutes by the deposition of poisoning species on the electrode. In order to solve the poisoning species problem, the electrochemical reduction of CO2 was carried out using a copper electrode in the pulse electrolysis mode by anodic as well as cathodic polarization. The anodic polarization intervals suppressed the deposition of the poisoning species on the electrode, and the amount of two hydrocarbons produced, CH4 and C2H6, decreased only slightly even after one hour. By choosing the appropriate anodic potential and time duration the selectivity for C2H6 formation was significantly enhanced. The enhancement was found to be due to the copper oxide formed on the copper electrode. The selectivity was further improved when the electrochemical reduction was carried out using a copper oxide electrode. The highest efficiency of about 28% was obtained at −3.15 V.  相似文献   

19.
Among low-cost and earth-abundant elements, the nickel-based HER catalysts, particularly nickel sulfide, are considered as one of the most promising candidates in this field. In this paper, a kind of spherical nickel sulfide material was obtained using nickel acetate and sulfur powder as precursors by one-pot synthesis. The use of sulfur powder as sulfur source with solution-based method will enable the synthesis of metal sulfides to be more simple and capable of mass production. In addition, the as-synthesized nickel sulfide exhibits an onset overpotential of as low as 25 mV, a Tafel slope of 90 mV dec 1, and an exchange current density of 0.44 mA cm 2. Furthermore, this catalyst maintains its catalytic activity for at least 25 h and only requires overpotentials of 42 and 113 mV to attain current densities of 2 and 10 mA cm 2, respectively. The electrocatalytic performance is promising for applications as non-noble-metal HER catalyst with water splitting for hydrogen production.  相似文献   

20.
In the present study TiO2/clay composites were synthesized by dispersion of TiO2 on the surfaces of a natural montmorillonite and a synthetic hectorite in order to increase the sorption ability of TiO2 and therefore its photocatalytic action. Six materials with different loading in TiO2 (15, 30 and 55 wt%) were prepared and characterized by several analytical techniques including XRD, BET and SEM analysis. The synthetic procedure allows the development of delaminated layers for hectorite–TiO2 samples, while in the case of montmorillonite–TiO2 composites we have the formation of a more lamellar-like aggregation. It was found that, the greater the percentage of TiO2, the greater the pore volume and the specific surface area of the montmorillonite–TiO2 samples. On the contrary, in the case of hectorite–TiO2 samples, as the content of TiO2 increases, the surface area and pore volume decreases. The photocatalytic efficiency of the nanocomposite catalysts was evaluated using a chloroacetanilide herbicide (dimethachlor) in water as model compound. The primary degradation of dimethachlor followed pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. All supported catalysts exhibit good photodegradation efficiency and their overall removal efficiency per mass of TiO2 was better than that of bare TiO2 produced by the sol–gel method. In conclusion, together with their good sedimentation ability the composite materials could be considered as a promising alternative for the removal of organic water contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号