首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In thermal barrier coatings (TBCs) of heavy-duty gas turbines, thermally grown oxide (TGO) develops in two stages, i.e. firstly, a thin layer of dense protective α-Al2O3 forms slowly, and then, a layer of porous detrimental mixed oxide (MO) between top coat (TC) and α-Al2O3 appears. During long-term isothermal oxidation at high temperature, the failure of TBCs usually occurs when a critical thickness of MO is reached, but the exact failure mechanism is still largely unclear, let alone the related stress development. In this paper, we analyze the stress evolution and the resultant failure modes due to the whole-layer growth of uniform MO. The results show that it is MO, rather than α-Al2O3, that is mainly responsible for the micro-cracking and/or delamination in TBCs. The fast growth of expansive MO induces catastrophic stresses, which leads to micro-cracking in the α-Al2O3 layer. The cracking of α-Al2O3 layer reduces the oxidation resistance and further accelerates the MO growth. Our theoretical analysis provides a reasonable explanation of the experimental results.  相似文献   

2.
La2Ce2O7 (LCO) is a promising candidate material for thermal barrier coatings (TBCs) application because of its higher temperature capability and better thermal insulation property relative to yttria stabilized zirconia (YSZ). In this work, La2Ce2O7 TBC with segmentation crack structure was produced by atmospheric plasma spray (APS). The mechanical properties of the sprayed coatings at room temperature including microhardness, Young's modulus, fracture toughness and tensile strength were evaluated. The Young's modulus and microhardness of the segmented coating were measured to be about 25 and 5 GPa, relatively higher than those of the non-segmented coating, respectively. The fracture toughness of the LCO coating is in a range of 1.3–1.5 MPa m1/2, about 40% lower than that of the YSZ coating. The segmented TBC had a lifetime of more than 700 cycles, improving the lifetime by nearly two times as compared to the non-segmented TBC. The failure of the segmented coating occurred by chipping spallation and delamination cracking within the coating.  相似文献   

3.
《Ceramics International》2022,48(22):33028-33040
The propagation of vertical crack on the surface of thermal barrier coatings (TBCs) may affect the interface cracking and local spallation. This research aims to establish a TBC model incorporating multiple cracks to comprehensively understand the effects of vertical crack distribution on the coating failure. The continuous TGO growth and ceramic sintering are together introduced in this model. The influence of the vertical crack spacing and non-uniform distribution on the stress state, crack driving force, and dynamic propagation is examined. Moreover, the influence of coating thickness on the crack growth driving is also explored. The results show that large spacing will lead to early crack propagation. The uniform distribution of vertical cracks can delay the spallation. When the spacing is less than 4 times ceramic coat thickness, the cracking driving force will come in a steady-state stage with the increase of vertical crack length. Prefabrication of vertical cracks with spacing less than 0.72 mm on the coating surface can greatly decrease the strain energy. The results in this study will contribute to the construction of an advanced TBC system with long lifetime.  相似文献   

4.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

5.
The durability of environmental barrier coating (EBC) systems in gas turbine engine environments depends upon their temperature dependent rates of degradation by processes such as steam volatilization and bond coat oxidation. While addition of a thermal barrier coating (TBC) reduces the temperature within the EBC system, it introduces new failure mechanisms. Deposition of a segmented HfO2 TBC with a reduced in-plane Young’s modulus is essential to avoid bifurcated TBC channel cracking into a Yb2Si2O7 EBC, and delamination, as a result of an approximately 50% difference in coefficients of thermal expansion (CTE) of the coating layers. During prolonged high temperature steam cycling, a thin fluorite phase reaction layer is observed to develop at the HfO2-YbDS interface consistent with recent thermochemical assessments. The CTE of the fluorite phase is shown to be substantially higher than that of either of the layers to which it is bonded, resulting in tunnel cracking of the fluorite, and eventual coating delamination of the TBC at either the fluorite-HfO2 or YbDS-fluorite interfaces upon cooling. The study highlights the importance of matching the CTEs of the TBC and EBC layers during coating system design, and those of the reaction products that may form between them.  相似文献   

6.
《Ceramics International》2022,48(10):13914-13926
Laser treatment (LT) to enhance the performance of atmospheric plasma spray (APS) deposited Al2O3 thermal barrier coatings (TBCs) was attempted for applications in extreme liquid-sodium environments of a sodium-cooled fast reactor (SFR). Thermally sprayed sacrificial ceramic TBCs are being proposed and investigated for installation on the stainless steel (SS) 316LN core catcher assembly of future SFRs to combat the core disruptive accidents (CDAs), wherein the primary criterion to be satisfied by the TBC is its long-term compatibility with the liquid-sodium coolant over a whole reactor life. Sacrificial ceramic coatings are susceptible to liquid-metal induced degradation by reactor-grade sodium. This study provides new insights into the failure mechanisms of APS Al2O3 coatings in liquid-sodium environments. Subsequently, an attempt is made to improve the performance of coatings by a surface modification approach using a laser treatment of the TBC topcoat. APS coatings exposed to liquid-sodium failed by spallation and delamination of the incrementally deposited topcoat, which is attributed to the formation and growth stress of ternary Na–Al oxides between the lamellar layers of the APS coatings. Compared to the APS coatings, LT coatings successfully retarded the liquid-sodium ingression and thereby exhibited improved degradation resistance and structural stability in reactor simulated sodium environments. The enhanced performance of LT coatings is attributed to its carefully re-engineered architecture of the APS TBC that could beneficially control the kinetics of interaction with liquid-sodium.  相似文献   

7.
Multilayered zirconia toughened alumina (ZTA) and c-zirconia coatings were prepared using electron beam physical vapour deposition (EB-PVD). Characterizations of the morphology and chemical composition of the deposited coatings were performed using scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Scratch resistance, nano-indentation and bending strength were used for the evaluation of the mechanical properties. X-ray diffraction of the top ceramic TBC surface showed that it consists entirely of cubic ZrO2 phase. The energy-dispersive X-ray spectroscopy analysis (EDS) showed that α-Al2O3 is the only oxide phase present at the interface, while SEM indicated the presence of columnar c-ZrO2 as the only phase of the top coat. Delamination over a large region was observed in the case of double layer (ZTA) coating. In contrast, the multilayered (ZTA1 + ZTA2 + c-Z) coating showed neither delamination nor cracking. The hardness and scratch measurements showed that the top coat c-ZrO2 layer is harder than the ZTA layers. The thermal conductivity of the multilayer coatings was estimated using the theoretical density and thermal conductivity values of zirconia toughened alumina (ZTA) and cubic-zirconia (c-ZrO2) together with their experimentally measured data.  相似文献   

8.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

9.
Novel ceramic topcoat of Gd2O3–Yb2O3–Y2O3 co-stabilized ZrO2 (GYbYSZ) thermal barrier coatings were fabricated via EB-PVD technique. The phase structural stability, phase constituent, chemical composition, morphology and cyclic oxidation of the thermal barrier coatings (TBCs) were systematically studied. Based on the XRD results, the GYbYSZ ceramics has not undergone phase transformation upon long-term annealing at 1373 K and 1523 K. Although the chemical content of the GYbYSZ ceramic coat deviates from the stoichiometric value, the coating is mostly composed of cubic phase, which is accord with the XRD pattern of the original ingot. A pyramidal-like morphology appears in the microtexture of the column tips and the measured diameters of the pyramids are about 2.5~4 μm. After thermal cycling, the surface of the coating presents a multi-layer structure, which is followed by layer-by-layer spallation. The failure zone of the ceramic coats is possible to occur the interior of the thermally grown oxide (TGO) layer, or within the top ceramic coat at the interface of bond coat/TGO layers. The degradation of GYbYSZ TBCs is primarily attributed to the accumulation and relaxation of residual stress, propagation of vertical through microcracks, the growth rumpling of TGO layer, the ridges of grain boundary and the abnormal oxidation of bond coat.  相似文献   

10.
(Gd1−xYbx)2Zr2O7 compounds were synthesized by solid reaction. Yb2O3 doped Gd2Zr2O7 exhibited lower thermal conductivities and higher thermal expansion coefficients (TECs) than Gd2Zr2O7. The TECs of (Gd1−xYbx)2Zr2O7 ceramics increased with increasing Yb2O3 contents. (Gd0.9Yb0.1)2Zr2O7 (GYbZ) ceramic exhibited the lowest thermal conductivity among all the ceramics studied, within the range of 0.8–1.1 W/mK (20–1600 °C). The Young's modulus of GYbZ bulk is 265.6 ± 11 GPa. GYbZ/YSZ double-ceramic-layer thermal barrier coatings (TBCs) were prepared by electron beam physical vapor deposition (EB-PVD). The coatings had an average life of more than 3700 cycles during flame shock test with a coating surface temperature of ∼1350 °C. Spallation failure of the TBC occurred by delamination cracking within GYbZ layer, which was a result of high temperature gradient in the GYbZ layer and low fracture toughness of GYbZ material.  相似文献   

11.
《Ceramics International》2022,48(6):8143-8154
The local spalling induced by the propagation and coalescence of cracks in the ceramic layer is the fundamental reason for the thermal barrier coatings (TBCs) failure. To clarify the effects of horizontal and vertical cracks on the coating failure, an integrated model combining dynamic TGO growth and ceramic sintering is developed. The effects of cracks on the normal and shear stress characteristics are analyzed. The driving force and propagation ability of cracks under different configurations are evaluated. The interaction between horizontal and vertical cracks is explored by analyzing the variation of the crack driving force. The results show that TGO growth causes the ratcheting increase of σ22 tensile stress above the valley, and the σ12 shear stress is on both sides of the peak. Ceramic sintering mainly contributes to the ratcheting increase of σ11 tensile stress. There is minimum strain energy when the horizontal crack extends to the peak. The vertical cracks on the surface of the ceramic layer are easier to propagate through the coating than that of other locations. When the horizontal and vertical cracks simultaneously appear near the valley, they can promote the propagation of each other. The present results can offer theoretical support for the design of an advanced TBC system in the future.  相似文献   

12.
LaTi2Al9O19 (LTA) is one of the most promising materials for new thermal barrier coatings (TBCs) to fulfill the demand of advanced gas turbines owing to its high temperature stability and low thermal conductivity. In the present study, a finite element (FE) based numerical study has been carried out to investigate the stress distribution in LTA single layered coating system in comparison with traditional yttria stabilized zirconia (YSZ) TBC. Stresses in YSZ/LTA double ceramic layer TBC system are also determined and presented for comparative analysis. The thermal cycling effect is simulated by sequent increment in TGO thickness in a series of FE simulations. In-plane stresses (σxx), out-of-plane stresses (σyy) and shear stresses (σxy) are determined for all systems, and peak stress values are presented for quantitative comparison. Elastic strain energy stored in TGO of all systems is calculated from FE results for TBC structural integrity assessment. It has been found that maximum in-plane and shear stresses are lower in the double ceramic layer coating system than in the single layer ceramic coating system. However, peak axial tensile and compressive stresses in the double ceramic layer coating are very close or higher than those in the single layer topcoat. Calculation of elastic store energy shows that double ceramic layer TBC system may exhibit better stability as compared to single layer systems. Results are presented to explain the failure mechanism in LTA coatings.  相似文献   

13.
The durability of plasma sprayed thermal barrier coatings (TBCs) has been of significant interest ever since their introduction in gas turbine engine components. Of particular importance is the role of coating processing, microstructure and ensuing properties on their thermal cycle life. Among the coating properties of the ceramic top coat that have shown strong correlations with durability include the elastic modulus (i.e., compliance) and the fracture toughness, both of which are influenced by processing as well as thermal aging during service. In this article, we have systematically investigated furnace cycle durability of plasma sprayed TBCs produced from controlled processing conditions, yielding differences in both modulus and toughness. Following performance assessment and mechanistic insights obtained from single layer ceramic coatings, novel bilayer architectures have been proposed and fabricated, in an effort to improve furnace cycle durability. The bilayer approach targets coating properties based on location, by providing dense, high toughness coating at regions prone to delamination failure (near‐interface), while allowing for the majority of the coating to contain high porosity, resulting in reduced overall modulus. Such improved bilayers simultaneously display both high durability and low thermal conductivity enabling a promising approach for functionally optimized coatings. The plasma spray process together with its ability to dynamically change process parameters enables the fabrication of these novel architectures.  相似文献   

14.
Segmentation cracks are crucial for enhancing the strain tolerance and decreasing the propensity of delamination for thermal barrier coatings (TBCs). In this study, segmentation cracks were prepared in air plasma-sprayed TBCs by controlling the residual stress. The evolution of the stress in the coating was characterized via photoluminescence piezospectroscopy using trace α-Al2O3 impurities as stress sensor. Tensile stress (~170 MPa) formed in the as-deposited coating was converted into compressive stress through further thermal exposure. The relationship between the formation of the segmentation cracks and stress in the coating was investigated. It was demonstrated that the segmentation cracks could be formed when a critical coating thickness is achieved. The critical coating thickness and spacing of the segmentation cracks dependent on the tensile stress in the as-deposited coating, and they could be manipulated by controlling the deposition and substrate temperatures. In addition, the evolution of the microstructure and phase composition of the yttria-stabilized zirconia coating was examined.  相似文献   

15.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

16.
Nowadays, the Gd2Zr2O7 thermal barrier coatings (TBCs) have been evaluated as a promising alternative to yttria-stabilized zirconia (YSZ). Thus, this investigation focuses on the thermal property, morphology, and failure mechanism of double ceramic layers (DCLs) GdNdZrO/YSZ advanced TBCs. The GdNdZrO coatings with columnar morphology have been deposited on NiCoCrAlYHf bond coating using an electron beam physical vapor deposition method. Material characterizations mainly include X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The thermal conductivity of GdNdZrO ceramic material is 0.494 W/mK at 1200°C. The thermal shock life of GdNdZrO/YSZ TBCs shows an average shock life of 5235 cycles. The TBC degradation occurs on the crack area within thermally grown oxide layer leading to the interface instability. The interface broken might play an important role in the failure mechanism of TBCs.  相似文献   

17.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

18.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications.  相似文献   

19.
In this research work, aluminium oxide/yttria stabilized zirconia (20%Al2O3/80%8YSZ) and ceria/yttria stabilized zirconia (20%CeO2/80%8YSZ) were coated through atmospheric plasma spray technique (APS) as thermal barrier coating (TBC) over CoNiCrAlY bond coat on aluminium alloy (Al-13%Si) substrate piston crown material and their thermal cycling behavior were studied experimentally. Thermal cycle test of both samples were conducted at 800?°C. Microstructural, phase and elemental analysis of the TBC coatings were experimentally investigated. The performance, combustion and emission characteristics of Al2O3/8YSZ, CeO2/8YSZ TBC coated and uncoated standard diesel engine were experimentally investigated. The test results revealed that CeO2/8YSZ based TBC has an excellent thermal cycling behavior in comparison to the Al2O3/8YSZ based TBC. The spallation of the Al2O3/8YSZ TBC occurred mainly due to the formation of thermally grown oxide (TGO), and growth of residual stresses at top coating and bond coating interface. The experimental results also revealed that the increase of brake thermal efficiency and reduction of specific fuel consumption for both TBC coated engine. Further reduction of HC, CO and smoke and increase of NOx emission were recorded for both TBC coated engine compared to the standard diesel engine.  相似文献   

20.
《Ceramics International》2023,49(8):12348-12359
Current work pursues generating controlled bimodal microstructure by plasma spraying of micrometer-sized Al2O3 and nanostructured spray-dried agglomerate with reinforcement of 20 wt% of 8 mol % yttria stabilized zirconia (8YSZ) and 4 wt% carbon nanotube (CNT) as potential thermal barrier coating (TBC) on the Inconel 718 substrate. Composite coatings exhibit bimodal microstructure of: (i) fully melted and resolidified microstructured region (MR), and (ii) partially melted and solid state sintered nanostructured regions (NR). Reinforcement with 8YSZ has led to an increase in hardness from ∼12.8 GPa (for μ-Al2O3) to ∼13.9 GPa in MR of reinforced Al2O3-YSZ composite. Further, with the addition of CNT in Al2O3-8YSZ reinforced composite, hardness of MR has remained similar ∼13.9 GPa (8YSZ reinforced) and ∼13.5 GPa (8YSZ-CNT reinforced), which is attributed to acquiescent nature and non-metallurgical bonding of CNT with MR. Indentation fracture toughness increased from 3.4 MPam0.5 (for μ-Al2O3) to a maximum of 5.4 MPam0.5 (8YSZ- CNT reinforced) showing ∼57.7% improvement, which is due to crack termination at NR, retention of t-ZrO2 (∼3.3 vol%) crack bridging, and CNT pull-out toughening mechanisms. Modified fractal models affirmed that the introduction of bimodal microstructure (NR) i.e., nanometer-sized- Al2O3, nanostructured 8YSZ and CNTs in the μ-Al2O3 (MR) contributes ∼44.6% and ∼72% towards fracture toughness enhancement for A8Y and A8YC coatings. An enhanced contribution of nanostructured phases in toughening microstructured Al2O3 matrix (in plasma sprayed A8YC coating) is established via modified fractal model affirming crack deflection and termination for potential TBC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号