首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(24):36644-36654
Z-scheme anatase/rutile TiO2/g-C3N4 hybrids (denoted as LTARCN-x, x represents calcination temperature) were designed and synthesized by growing TiO2 nanorods on the surface of g-C3N4 utilizing impregnation-calcination method. Furthermore, through the etched effect of hydrochloric acid and calcination treatment, the as-prepared LTARCN-x possessed abundant pore structure and larger surface area, and the surface area of LTARCN-425 was 8.5 times than that of bulk g-C3N4. Meanwhile, the g-C3N4 would play a role of carrier to prevent from the aggregation of TiO2 nanorods. In addition, under visible light irradiation, the Z-scheme heterostructure would be constructed between the rutile TiO2 nanorod and g-C3N4 nanosheet, respectively. The optimized photocatalyst LTARCN-425 exhibited a preferable activity, the photocatalytic hydrogen production rate of LTARCN-425 was about 1031 μmol g?1 h?1, and it was about 6.3 and 13.6 times than that of g-C3N4 and TiO2, respectively. Moreover, the photocatalytic mechanism of the hydrogen production was studied intensively via designing fluorescent probe, Pt and PbO2 deposition experiment, and the characterizations of EPR, TEM, HRTEM and XPS.  相似文献   

2.
《Ceramics International》2020,46(13):21268-21274
As a promising inorganic semiconductor photocatalyst, TiO2 has been widespread concerned since 1972. However, its practical application is limited due to its low efficiency for utilizing solar light and rapid recombination of photo-generated charges. Here, we report a way to solve these problems by calcining TiO2 samples under different conditions. It was found that the catalytic performance of TiO2 catalysts was closely related to calcination temperature and calcination atmosphere. The XRD, Raman spectra, BET, UV–vis spectra, SEM and TG-DTA investigations of the catalysts revealed that the crystal structure of TiO2, the specific surface area, and abundant oxygen vacancies were the primary factors influencing the performance of TiO2 catalysts. Consequently, the TiO2 nanocrystal calcined in a nitrogen/hydrogen mixed atmosphere at 300 °C for 3 h exhibited higher catalytic activity than others. These results demonstrated that annealing conditions can play an important role in catalyst activity.  相似文献   

3.
A series of assembled porous TiO2/g-C3N4 (TC) powders composed of spherical nanoparticles were synthesized by controlling the molar ratio of urea to tetrabutyl titanate (TBOT) in a facile hydrothermal process. A nanosheets-constructed hierarchical structure was obtained at the molar ratio of urea to TBOT of 10:1, which possessed uniform mesopores with bimodal distribution (0.5–1.5 nm and 2–20 nm) and interconnected macropores between TC nanosheets. The specific surface area achieved 98.4 m2 g?1. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope (HRTEM) analysis proved that the nanosheets are made of overlapping TC nanocomposite. Photoluminescence (PL) spectra results illustrated that a well-defined hierarchical porous structure is particularly desired for the low recombination rate of carriers. Further, the TC-decorated carbon fiber (CF) cloth was obtained based on the nanosheets assembled hierarchical structure, which showed more outstanding photocatalytic behavior with high degradation capability for Rhodamine B (RhB) (99.9%) and tetracycline hydrochloride (89.8%) at 60 min by 500 W Xe lamp irradiation. After five consecutive cycles, the degradation efficiencies of TC/CF cloth for both RhB and tetracycline hydrochloride all remained above 90% of the initial value.  相似文献   

4.
《Ceramics International》2016,42(8):9796-9803
The improved photocatalyst carbon-doped WO3/TiO2 mixed oxide was synthesized in this study using the sol–gel method. The catalyst was thoroughly characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy, N2 adsorption desorption analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic efficiency of the prepared materials was evaluated with respect to the degradation of sodium diclofenac (DCF) in a batch reactor irradiated under simulated solar light. The progress of the degradation process of the drug was evaluated by high-performance liquid chromatography (HPLC), whereas mineralization was monitored by total organic carbon analysis (TOC) and ion chromatography (IC). The results of the photocatalytic evaluation indicated that the modified catalyst with tungsten and carbon (TWC) exhibited higher photocatalytic activity than TiO2 (T) and WO3/TiO2 (TW) in the degradation and mineralization of diclofenac (TWC>TW>T). Complete degradation of diclofenac occurred at 250 kJ m−2 of accumulated energy, whereas 82.4% mineralization at 400 kJ m−2 was achieved using the photocatalytic system WO3/TiO2-C. The improvement in the photocatalytic activity was attributed to the synergistic effect between carbon and WO3 incorporated into the TiO2 structure.  相似文献   

5.
6.
A hierarchical structure composed of Pt@Co3O4/TiO2 (CTP) ternary nanocomposite was synthesized and demonstrated for its enhanced and durable production of hydrogen from glycerol under simulated solar light irradiation. The rate of hydrogen production over the optimized composition was found to be 19.2 mmol h?1 g?1cat. The obtained XRD and XPS results revealed the facile formation of the composite. The heterojunction formed in the ternary system remarkably enhanced the visible light absorption properties and charge separation in CTP as evidenced from their UV–visible absorption and PL spectra, respectively. The optimized union of the materials with specific properties and their intimate physical contacts might be the origin for the manifested, improved and durable photocatalytic efficiency towards hydrogen production.  相似文献   

7.
TiO2 oxide was deposited on a microstructured α-Al2O3 ceramic hollow fiber substrate by a simple one-step solution-immersion process with tetraethyl orthosilicate (TEOS) as a binder. The effects of the starting coating solution's composition on the photocatalytic properties of TiO2 powders deposited on a substrate was determined by using TiO2-supported Al2O3 ceramic hollow fiber substrates fabricated from coating solutions with different compositions and examining the substrates' effect on the methylene blue (MetB) degradation reaction under ultraviolet light. A strong correlation was observed between the initial coating solution compositions and the final photocatalytic characteristics of the TiO2-supported Al2O3 ceramic hollow fiber substrates. Under optimal conditions, the MetB removal efficiency reached about 91% in a few minutes. To the best of our knowledge, this is the highest and most rapidly attained MetB removal efficiency reported for TiO2-supported Al2O3 ceramic hollow fiber substrates. Furthermore, apart from attaining an extremely high photocatalytic activity within minutes, the fabricated TiO2-supported Al2O3 ceramic hollow fiber substrates exhibited high photocatalytic stability even after several cycles.  相似文献   

8.
N-doped mesoporous TiO2 nanorods were fabricated by a modified and facile sol–gel approach without any templates. Ammonium nitrate was used as a raw source of N dopants, which could produce a lot of gasses such as N2, NO2, and H2O in the process of heating samples. These gasses were proved to be vitally important to form the special mesoporous structure. The samples were characterized by the powder X-ray diffraction, X-ray photoelectron spectrometer, nitrogen adsorption isotherms, scanning electron microscopy, transmission electron microscopy, and UV-visible absorption spectra. The average length and the cross section diameter of the as-prepared samples were ca. 1.5 μm and ca. 80 nm, respectively. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The N-doped mesoporous TiO2 nanorods showed an excellent photocatalytic activity, which may be attributed to the enlarged surface area (106.4 m2 g-1) and the narrowed band gap (2.05 eV). Besides, the rod-like photocatalyst was found to be easy to recycle.  相似文献   

9.
《Ceramics International》2016,42(10):11827-11837
Ternary magnetic Fe3O4 nanowire@CeO2/Ag nanocomposites have been firstly synthesized by means of hydrothermal and co–precipitation techniques, and their ability to adsorb, photocatalytic degradation organic pollutants, methylene blue present in water, and separate, has been demonstrated. The results show that CeO2 and Ag nanoparticles are uniformly deposited on the surface of Fe3O4 nanowires. The photocatalytic experiments demonstrate that the Fe3O4@CeO2/Ag nanocomposites exhibit remarkably enhanced photocatalytic properties and stability compared to CeO2, CeO2/Ag, Fe3O4@CeO2, Fe3O4 under natural sunlight exposure. Moreover, excellent photocatalytic degradation efficiency for phenol and MO are also observed. The enhanced photocatalytic performance may be attributed to the synergetic effect of Fe3O4 nanowire, CeO2 and Ag nanoparticles, which lead to the enhanced light harvesting, the promoted charge separation and enhanced adsorption capacity. In addition, the Fe3O4@CeO2/Ag photocatalyst can be easily collected and separated by an external magnet. These results suggest that the nanocomposites could be exploited as potential candidates for solar photocatalysis.  相似文献   

10.
TiO2 films in various thicknesses were prepared by sol-gel method, and their photocatalytic activities in the decomposition of gaseous 2-propanol were evaluated. It was found that the photocatalytic activities of transparent TiO2 films increase with the increase of film thickness: The photocatalytic activity of TiO2 films in 670 nm-thickness was 3.7 times that of films in 70 nm-thickness. We proposed that the higher photocatalytic activities for the thicker TiO2 films originate from the greater amount of photogenerated electron and hole pairs, which are transferred from the inside to the surface of TiO2 films. We also provided some experimental evidences supporting this mechanism.  相似文献   

11.
Mimicking the natural photosynthesis system, artificial photocatalysis facilitates effective utilization of solar energy for environmental sustainability and hydrogen energy production. In this work, the robust and efficient carbon fiber has been successfully incorporated into the interface between WO3 nanodots and MoSe2 needles using the facile hydrothermal and solvothermal method. The suitable interfacial contact of heterogeneous photocatalysts plays a significant role in the separation/transfer of interfacial photogenerated electron-hole pairs and hetero-junction. It seems an efficient approach for enhanced photocatalytic performance since the greater area of contact could improve the interfacial rate of charge transfer. The phase structure of prepared WO3 nanodots changed from the monoclinic to hexagonal phase by the addition of co-catalyst. The experimental results exhibited that carbon fiber played a tri-functional role to boost up the photocatalytic activity over MoSe2 nanostructures. It's not only act as operative co-catalyst but could also serve as the conductive electron bridges, rather than general cocatalyst, to accumulate electrons and encourage the hydrogen generation kinetics over the WO3 photocatalysts. More interestingly, the WO3?1% MoSe2?1.5% carbon fiber and WO3?1%MoSe2 nanocomposites demonstrated the excellent rates of hydrogen evolution 438.7 and 356.2?mmol/g.h, which were 7.6 and 6.17 times higher when compared to that of pure MoSe2, respectively. Under the visible light excitation, the atomically junction encourages fast electron transfer from nanofibers to MoSe2 to suppress the rapid recombination kinetics within WO3 nanodots and extend the lifetime of WO3 charge carrier's, thereby releasing more photogenerated electrons with higher reducing power for hydrogen evolution. The current work can contribute with new perspectives and mechanistic insight for the design and development of heterogeneous photocatalysts WO3 based nanostructures using the combination of MoSe2 and trifunctional carbon nanofibers for environment and energy harvesting applications.  相似文献   

12.
Titanium-silicon (Ti/Si) binary oxides having different Ti content were prepared by the sol-gel method and utilized as photocatalysts for the hydrogenation and hydrogenolysis of CH2CCH with H2O. The photocatalytic reactivity and selectivity of these catalysts were investigated as a function of the Ti content and it was found that the hydrogenolysis reaction (C2H6 formation) was predominant in regions of low Ti content, while the hydrogenation reaction (C3H6 formation) proceeded in regions of high Ti content. The in situ photoluminescence, diffuse reflectance absorption, FT-IR, XAFS (XANES and EXAFS), and XPS spectroscopic investigations of these Ti/Si binary oxides indicated that the titanium oxide species are highly dispersed in the SiO2 matrices and exist in a tetrahedral coordination exhibiting a characteristic photoluminescence spectrum. The charge transfer excited state of the tetrahedrally coordinated titanium oxide species plays a significant role in the efficient photoreaction with a high selectivity for the hydrogenolysis of CH3CCH to produces mainly C2H6 and CH4, while the catalysts involving the aggregated octahedrally coordinated titanium oxide species show a high selectivity for the hydrogenation of CH3CCH to produce C3H6, being similar to reactions of the powdered TiO2 catalysts. The good parallel relationship between the yield of the photoluminescence and the specific photocatalytic reactivity of the Ti/Si binary oxides as a function of the Ti content clearly indicates that the high photocatalytic reactivity of the Ti/Si binary oxides having low Ti content is associated with the high reactivity of the charge transfer excited state of the isolated titanium oxide species in tetrahedral coordination, [Ti3+-O]*.  相似文献   

13.
采用浸渍法制备了H6P2W18/TiO2-SiO2光催化剂,并采用傅里叶变换红外光谱(FT-IR)、X射线粉末衍射(XRD) 、扫描电子显微镜(SEM)对其进行了表征,通过光催化剂H6P2W18O62/TiO2-SiO2对甲基橙的研究,得出催化剂制备适宜条件为:H6P2W18O62的负载量为30%,催化剂活化温度为200 ℃,煅烧时间为3 h。以光催化降解染料废水甲基橙为探针反应, 探讨了甲基橙初始浓度,催化剂用量、溶液pH值对光催化降解效果的影响以及催化剂的重复使用性能. 结果表明,H6P2W18/TiO2-SiO2光催化剂表现出较高的光催化性能,在催化剂的用量为1.39 g/L,甲基橙溶液初始浓度为5 mg/L, 初始pH=3.5时, 反应时间为2.5 h优化条件下,甲基橙的降解率可达99.2%,且产生了协同效应. H6P2W18O62/TiO2-SiO2光催化剂对亚甲基蓝、罗丹明B和甲基红均具有较高的光催化性能,降解率达84.0%~100.0%. 光催化剂还表现出较好的重复使用性能,第5次降解率仍为94.4%.  相似文献   

14.
采用浸渍法制备了H6P2W18O62/Ti O2-Si O2光催化剂,并采用傅里叶变换红外光谱(FTIR)、X射线粉末衍射(XRD)、扫描电子显微镜(SEM)对其进行了表征。通过光催化剂H6P2W18O62/Ti O2-Si O2对含甲基橙模拟废水进行处理,结果表明,H6P2W18O62/Ti O2-Si O2光催化剂表现出较高的光催化性能,在催化剂用量为1.39 g/L,甲基橙溶液质量浓度为5 mg/L,初始p H=3.5,反应时间2.5 h的条件下,甲基橙的降解率可达99.2%,且产生了协同效应。H6P2W18O62/Ti O2-Si O2光催化剂对罗丹明B、亚甲基蓝和甲基红均具有较高的光催化性能,降解率达84.0%~100.0%。光催化剂还表现出较好的重复使用性能,第5次降解率仍为94.4%。  相似文献   

15.
采用H3PW12O40/TiO2-SiO2为催化剂,以1,2-丙二醇、环己酮为原料合成环己酮1,2-丙二醇缩酮。探讨H3PW12O40/TiO2-SiO2对该反应的催化活性。实验表明:H3PW12O40/TiO2-SiO2是合成环己酮1,2-丙二醇缩酮的良好催化剂;在n(环己酮)∶n(1,2-丙二醇)=1∶1.6,反应时间为60min,环己烷用量为6mL,催化剂的用量占反应物料总质量的0.8%的适宜条件下,其收率可达81.9%。  相似文献   

16.
《Ceramics International》2019,45(10):13187-13192
The use of photocatalytic technology in VOCs pollutants removal has caused great attention. Fe2O3 possesses some unique advantages among diverse visible-light driven photocatalysts due to its narrow bandgap, abundant reserves and favorable biosafety. In this work, Fe2O3/TiO2 composites was fabricated by a facile impregnation method and their photocatalytic performance towards acetaldehyde and o-xylene was detected. TEM, EDS, photoluminescence spectra and UV-Vis were used to characterize the morphology and properties of the Fe2O3/TiO2 composites. It was proved that the photocatalytic ability of TiO2 was greatly improved by coupling with Fe2O3. Interestingly, the Fe2O3/TiO2 composites showed deactivation in the degradation of acetaldehyde while no such phenomenon in the o-xylene case. The reason could be that Fe3+ accepted the photo-induced electrons of TiO2 and was reduced to Fe2+, which can easily combine with the intermediate product of acetaldehyde and generated Fe(CH3COO)2. Moreover, the deactivated photocatalyst can be regenerated by heat treatment, since Fe(CH3COO)2 can be decomposed into Fe2O3 in air. ESR was further used to demonstrate this mechanism. This work reveals the coupled redox reactions in the photocatalytic process, which is benefit for the design of new photocatalysts.  相似文献   

17.
《Ceramics International》2020,46(8):11786-11798
Recently, significant effort has been made toward the development of graphene-based visible-ligh-responsive photocatalysts and their application to dye wastewater treatment. Herein, a series of octahedral ZnFe2O4/graphene (ZnFe2O4-G) nanocomposites were synthesized using a one-pot solvothermal reaction without the need of a surfactant as novel bifunctional materials exhibiting both high adsorption and good visible-light-responsive photocatalyst properties. The crystal structure, morphology and photocatalytic degradation properties, as well as adsorption behavior, of the octahedral ZnFe2O4/graphene composites were investigated in detail. The adsorption capacity and UV–vis spectrometry results indicate that the dye removal efficiency over the samples followed the order of: methylene blue (MB) > rhodamine B (RhB) > methyl orange (MO). The ZnFe2O4-G materials exhited enhanced photocatalytic degradation properties for cationic dyes (MB and RhB) compared to those for the anionic dye (MO). In addition, the experimental results indicate that the ZnFe2O4-G materials can decompose H2O2 in the visible-light photocatalytic process to form hydroxyl radicals (•OH), which are mainly responsible for the photodegradation of the organic contaminants.  相似文献   

18.
Photocatalytic removal of tetracycline (TC) from the wastewater is of great value in the chemical and environmental engineering field. Here, we introduced a facile one-step method for the synthesis of BiOBr/Bi2WO6 heterojunctions by using cheap CTAB as the Br source. We showed the possibility of our method to fine-tune the content of BiOBr in the produced BiOBr/Bi2WO6 by simply changing the dosage of cetyltrimethylammonium bromide (CTAB), providing a platform for the delicate tuning of the visible-light absorbance ability of the composites. With a suitable heterojunction structure of BiOBr/Bi2WO6-0.2, it exhibited an ultrarapid photocatalytic activity towards TC (20 mg·L-1), with a competitive removal efficiency of 88.1% within 60 min and an ultrahigh removal rate of 0.0349 min-1. It could also be robustly recycled for at least 5 cycles with slight removal efficiency loss. We demonstrated that this exciting photocatalytic performance was due to the highly decreased recombination of photoinduced electrons and holes on our composites by constructing this heterojunction structure, and the resulting OH and contributed to the effective degradation of TC to CO2.  相似文献   

19.
通过超声分散法制备了H4SiW12O40掺杂TiO2光催化剂,采用XRD、红外光谱进行表征。考察了H4SiW12O40的掺杂比例、催化剂的煅烧温度、催化剂的投加量、反应物的初始浓度对光催化降解碱性品红溶液的影响,并利用TOC测定和紫外-可见吸收光谱进一步研究了光催化降解过程。研究结果表明:H4SiW12O40掺杂后,TiO2的粒径减小,比表面积增大,光谱响应范围发生红移;硅钨酸掺杂TiO2的最佳比例为3.20%wt.;催化剂的最佳煅烧温度为400℃;催化剂的最佳用量为0.4g/L;当碱性品红溶液的初始浓度为14mg/L时,光催化效果较好;此外,光催化降解碱性品红溶液的过程可能是分步进行的。  相似文献   

20.
《Ceramics International》2020,46(13):21156-21165
To improve the thermal and mechanical properties of Al2O3/AlN composite ceramics, a novel heterogeneous precipitation coating (HPC) approach was introduced into the fabrication of Al2O3/AlN ceramics. For this approach, Al2O3 and AlN powders were coated with a layer of amorphous Y2O3, with the coated Al2O3 and AlN powders found to favor the formation of an interconnected YAG second phase along the grain boundaries. The interconnected YAG phase was designed to act as a diffusion barrier layer to minimize the detrimental interdiffusion between Al2O3 and AlN particles. Compared with samples prepared by a conventional ball-milling method, the HPC Al2O3/AlN composites exhibited less AlON formation, a higher relative density, a smaller grain size and a more homogeneous microstructure. The thermal conductivity, bending strength, fracture toughness and Weibull modulus of the HPC Al2O3/AlN composite ceramics were found to reach 34.21 ± 0.34 W m−1 K−1, 475.61 ± 21.56 MPa, 5.53 ± 0.29 MPa m1/2 and 25.61, respectively, which are much higher than those for the Al2O3 and Al2O3/AlN samples prepared by the conventional ball-milling method. These results suggest that HPC is a more effective technique for preparing Al2O3/AlN composites with enhanced thermal and mechanical properties, and is probably applicable to other composite material systems as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号