首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe-doped Mn1,5Co1,5O4 coatings on Crofer22APU were processed by an electrophoretic co-deposition method and the corrosion resistance was tested at 750 °C up to 2000 h.The “in-situ” Fe-doping of the manganese cobalt spinel was achieved by electrophoretic co-deposition of Mn1,5Co1,5O4 and Fe2O3 powders followed by a two-step reactive sintering treatment. The effects on the coating properties of two different Fe-doping levels (5 and 10 wt.% respectively) and two different temperatures of the reducing treatment (900 and 1000 °C) are discussed. Samples with Fe-doped coatings demonstrated a lower parabolic oxidation rate and thinner oxide scale in comparison with both the undoped Mn1,5Co1,5O4 spinel coating and bare Crofer 22 APU. The best corrosion protection was achieved with the combined effect of Fe-doping and a higher temperature of the reducing step at 1000 °C.  相似文献   

2.
《Ceramics International》2019,45(13):16297-16304
In this work, a facile method to produce the ultrafine (4–14 nm) and mixed valence Mn3O4 nanoparticles from low-cost MnSiO3 (manganese silicate) particles were introduced. The best NaOH concentration in hydrothermal treatment has been determined after a series of experiments. Also, the as-synthesized Mn3O4 material with good specific capacitance has been investigated attentively at a high mass loading (∼3 mg cm−2). The particles size and the pore size distribution is found to be refined and optimized, respectively. This increased the crystallinity and the capacitive contribution in the energy process. Thereby improving the rate capability and cycling stability, which result in significant improvement of specific capacitance (401 F g−1 at 10 mV s−1). The aqueous asymmetric supercapacitor device AC//Mn3O4 with a stable working voltage window up to 2.0 V has been fabricated, and it is found to have an energy density of 40.2 W h kg−1 at 500 W kg−1 power density. This could sustain 5000 cycles galvanostatic charge/discharge with 96.9% retention.  相似文献   

3.
纳米Fe3O4磁性材料在生物医学、环保、催化及电子信息等领域有巨大的应用潜力,但单独的纳米Fe3O4颗粒存在一些弊端,难以直接使用,在生物医药领域尤其如此。对Fe3O4磁性纳米粒子进行表面改性,可以改善其结构与性能,因此,备受科学界关注。对近年来Fe3O4磁性纳米颗粒的表面改性方法及其在生物医学、环境工程两大领域中的应用做了综述,并对今后发展趋势做了初步的展望。  相似文献   

4.
《Ceramics International》2017,43(7):5708-5714
Corrosion behavior of self-sintered, ternary-layered titanium silicon carbide (Ti3SiC2) and titanium aluminum carbide (Ti3AlC2) fabricated by an in-situ solid-liquid reaction/hot pressing process was investigated by potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. Commercially pure titanium (Ti) was selected for comparison through XRD, XPS, SEM and EDS examinations for elucidating both the passivation behavior and corrosion mechanism of the alloys. Both Ti3SiC2 and Ti3AlC2 exhibited significantly superior passivation characteristics compared to Ti; Ti3SiC2 also showed better corrosion resistance. The silicon/aluminum site is prone to attack, and the difference in the diffusion rate between the A-site atoms and titanium decreases the passivation ability of the MAX phase. CP titanium exhibited a lower passivation current density and did not undergo breakdown in the test potential region while two MAX phases are destroyed. Nevertheless, the corrosion resistances of Ti3SiC2 and Ti3AlC2 are comparable to that of CP titanium.  相似文献   

5.
Magnesium–aluminum spinel (MAS) precursor powder was synthesized through a microwave hydrothermal method. The synergistic effects of sintering process and sintering aids on the densification, hardness and corrosion resistance of MAS were revealed. X-ray diffraction analysis (XRD), Archimedes’ drainage method, fully automatic micro-Vickers hardness test and scanning electron microscopy (SEM) were performed to analyze the phase composition, bulk density, hardness microstructure and corrosion depth of the samples, respectively. Results revealed that the best two-step sintering condition is 1650 °C/3 min/1550 °C/20 h. The MAS products obtained under the best condition have clear grain boundaries, uniform particle size distribution, and few pores. When the amount of Y2O3 added is 4 wt.%, Y2O3 and Al2O3 form the second-phase solid solution Al5Y3O12, which activates the crystal lattice and benefits the sintering densification of MAS. Under these conditions, the relative density of the MAS composite ceramics prepared is relatively large (95.94 %), the grain size is relatively uniform, the hardness is relatively large (1264 HV), and the corrosion depth is relatively small (94.58 μm).  相似文献   

6.
《Ceramics International》2019,45(10):13242-13250
A novel NiW/TiNY2O3 composite ceramic coating has been synthesized by direct current deposition for metallic parts protection. The structural, morphology, hardness and anti-corrosion properties of the NiW/TiNY2O3 coating have been evaluated by SEM, EDS, TEM, XRD and EIS methods. Results indicated that the samples have uniform and compact nodular structure without defects. It demonstrated that the TiN and Y2O3 nanoparticles had been uniformly distributed in the composites. The incorporation of TiN and Y2O3 in NiW matrix could improve the hardness and anti-corrosion properties. The crystallite size was in the diameter of 13–16 nm. The electrochemical results illustrated that 6-8 Adm−2 and 30 min were beneficial to the improvement of anti-corrosion behaviors of the produced composite coating. After immersed 168 h in 3.5 wt% NaCl aqueous solution, the coating prepared at 30 min and 2 A dm−2 owns better anti-corrosion properties. The embedded TiN and Y2O3 nanoparticles in NiW matrix could decrease the electrochemical activity and enhance the protective properties.  相似文献   

7.
《Ceramics International》2020,46(17):26945-26955
In this study, α-Al2O3 nanoparticles were prepared using a simple sol-gel method. Synthesized nanoparticles with NiCrAlY alloy were used as coating layer for high temperature corrosion control of boiler tubes in absence and presence of fuel ash. Thermal plasma technique was used for coating process. Corrosion rates of austenitic stainless steel tubes were evaluated via weight loss technique as a function of temperature. Prepared α-Al2O3 nanoparticles and surface morphology of austenitic stainless steel tubes were characterized by XRD, SEM and EDS analyses. The results show that the corrosion rate increases with increasing temperatures, in absence and presence of coating. Maximum coating efficiency was 82 and 88% in absence and presence of fuel ash respectively.  相似文献   

8.
The corrosion inhibition of cold rolled steel (CRS) in 7.0 mol·L-1 H2SO4 solution by red tetrazolium (RTZ) was carefully investigated using both experimental procedures and theoretical techniques. The results show that RTZ acts as an effective inhibitor for the corrosion of CRS in 7.0 mol·L-1 H2SO4, and the maximum inhibition efficiency is higher than 95% with a RTZ concentration of 2.0 mmol·L-1. The adsorption of RTZ on CRS surface follows Langmuir isotherm. RTZ effectively retards both cathodic and anodic reactions, and acts as a mixed-type inhibitor. EIS exhibits two capacitive loops, and their resistances increase drastically in the presence of RTZ. SEM and AFM confirm that the addition of RTZ could significantly retard the corrosion of CRS surface. A series of characterizations like FTIR, RS, XRD and XPS reveal that the corrosion CRS surface is composed of the corrosion products of iron sulfates, iron oxides and iron hydroxide, as well as inhibitor. Theoretical results of quantum chemical calculation and molecular dynamics (MD) indicate that the adsorption center of RTZ+ (organic cationic part of RTZ) mainly relies on its tetrazole ring, and the adsorption of RTZ+ on Fe (001) surface is in a nearly flat orientation mode.  相似文献   

9.
采用湿化学法在LiNi0.05Mn1.95O4表面包覆锂离子导体LiTi2(PO4)3。采用X射线衍射、扫描电子显微镜、恒电流充放电、电位阶跃、交流阻抗技术对合成产物进行物相、形貌和电化学分析。结果表明:LiTi2(PO4)3包覆LiNi0.05Mn1.95O4与未包覆LiNi0.05Mn1.95O4具有相似的X射线衍射结果,LiNi0.05Mn1.95O4包覆LiTi2(PO4)3前后的锂离子扩散系数变化不大,但包覆LiTi2(PO4)3后的LiNi0.05Mn1.95O4颗粒边界和轮廓变得模糊。LiTi2(PO4)3包覆LiNi0.05Mn1.95O4的比容量略低于未包覆LiNi0.05Mn1.95O4,且随着LiTi2(PO4)3包覆量的增加而减小,但包覆LiTi2(PO4)3后的LiNi0.05Mn1.95O4循环性能得到了大幅提高。  相似文献   

10.
《Ceramics International》2020,46(6):7336-7345
Room temperature detection of highly sensitive Hydrogen (H2) gas sensing material preparation was taken as a major objective in this present work. Herein, a novel one pot hydrothermal method is proposed for the synthesis of ternary r-GO decorated Manganese oxide (Mn3O4) and Vanadium pentoxide (V2O5) nanocomposite. The significant electrical conductivity of r-GO plays an important role here to enhance the sensing property. Tunable band bending features of metal oxides over the r-GO surface makes the composite works at room temperature with high selectivity of H2. The optical, structural and morphological characteristics were analyzed by UV–Visible spectroscopy (UV–Vis), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray Photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), and High Resolution-Transmission Electron Microscope (HR-TEM). The sensing results reveals that the present nanocomposite is selectively sensitive towards H2 with sensitivity value of (175%) at room temperature with response time (82 s) and recovery time (92 s). To investigate the low detection limit gas concentration was varied in the range from 20 ppm to 50 ppm. The synergetic sensing performance and stability of this nanocomposite could be due to the formation of metal oxides with perspicuous nanostructures as heterojunction decorated over the r-GO stack layer.  相似文献   

11.
In this study, monolayer polypyrrole (PPY), polyaniline (PANI), and bilayer PPY/PANI, PANI/PPY coatings were deposited onto steel electrodes by electropolymerization in 0.1 M monomer and 0.3 M oxalic acid solution. Such corrosion parameters of these electrodes, as corrosion potentials, anodic Tafel constants and corrosion current densities were determined by means of current–potential curves as a function of time in 1 M H2SO4 solution. These findings were compared to the corrosion parameters of a bare steel electrode in the same acid solution. The monolayer and bilayer polymer coatings were characterized by the Fourier transform infrared (FTIR) spectroscopy and SEM. Bilayer coatings displayed better corrosion inhibition efficiencies than monolayer coatings. Furthermore, the PPY/PANI coatings offered superior corrosion protection than the PANI/PPY coatings.  相似文献   

12.
Fe3O4 magnetic nanoparticles (MNPs) were synthesised, characterised, and used as a peroxidase mimetic to ac-celerate levofloxacin sono-degradation in an ultrasound (US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution pH, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the pH range from 4.0 to 9.0. Levofloxacin removal ratio in-creased with Fe3O4 MNP dose up to 1.0 g·L?1 and with H2O2 concentration until reaching the maximum. More-over, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.  相似文献   

13.
纳米四氧化三铁具有过氧化物模拟酶功能,在pH=1.42的HCl-NaAc介质中,催化双氧水产生羟基自由基迅速氧化甲基橙使其褪色,基于此建立了一种过氧化氢-甲基橙-纳米四氧化三铁模拟酶催化反应体系测定痕量双氧水的新方法。讨论了缓冲溶液、纳米四氧化三铁用量、反应温度及反应时间的影响,确立了最佳反应条件。在优化的条件下,该方法的线性范围为1.17 ~35.2 μmol/L,检出限为0.6 μmol/L。该法用于食品中痕量双氧水的测定,取得满意的结果。  相似文献   

14.
MnOx-Fe3O4 nanomaterials were fabricated by using the innovative scheme of pyrolyzing manganese-doped iron-based metal organic framework in inert atmosphere and exhibited extraordinary performance of NO reduction by CO (CO-SCR). Multi-technology characterizations were conducted to ascertain the properties of fabricated materials (e.g., TGA, XRD, SEM, FT-IR, XPS, BET, H2-TPR and O2-TPD). Moreover, the interaction between reactants and catalysts was ascertained by in situ FT-IR. Experimental results demonstrated that Mn was an ideal promoter for iron oxides, resulting in decrease of crystallite size, improve reducibility property, enhance the mobility and the amount of lattice O2- species, as well as strength the adsorption ability of active NO and CO to form multiple species (e.g., nitrate and carbonate). The unprecedented enhancement of CO-SCR activity over Mn-Fe nanomaterials follows the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) reaction pathway.  相似文献   

15.
用电化学方法将Mn3O4负载于活性炭纤维(activated carbon fiber,ACF)表面制备了Mn3O4/ACF复合阴极,与铂丝阳极构成了异相类电芬顿体系对模型污染物亚甲基蓝(MB)进行降解,考察了该体系在不同pH条件下对MB去除率,并对体系中的活性氧物种进行了检测,初步探讨了降解机理。实验结果表明,在pH 3.0、pH 5.0和pH 7.0时亚甲基蓝脱色率分别达到97.3%、99.9%、99.8%,pH5.0时TOC去除率达到88.6%,pH 7.0和pH 3.0时也分别达到了80.4%和73.4%,拓宽了电芬顿反应的适宜pH范围。体系中活性氧物种的检测结果表明,氧在阴极电还原产生H2O2,并与Mn3O4反应生成羟基自由基·OH,同时,氧的一电子还原产物超氧自由基O2·-也对阴极表面污染物的脱色有重要贡献。  相似文献   

16.
为解决水体富营养化所导致的恶臭现象, 用SiO2和壳聚糖(CS)对Fe3O4纳米粒子进行改性, 再运用纳米粒子与微胶囊吸附-包埋的方法固定化功能性菌株, 进而对该体系的脱氮特性进行了研究。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、热重分析(TGA)及振动样品磁强计(VSM)等手段对材料的形貌、结构、磁学性能等进行表征。研究结果表明, SiO2与CS在Fe3O4微球表面形成的包覆层具有产物结晶度高、形态规则、磁性能优良等特点。磁性微球在20min时对菌株的吸附率达85.00%, 吸附的活菌数达(2.1~2.2)×106cfu/mL。在对水体脱氮的研究中, 游离态菌株对氨氮和硝氮的去除率分别为54.13%和59.17%, 固定化菌株对氨氮和硝氮的去除率分别达到72.26%和74.56%。实验结果表明, 改性Fe3O4磁性微球对菌株吸附能力强, 微胶囊结构使固定化菌株比游离态菌株具有更强的脱氮性能, 且能延长Fe3O4磁性微球的生命周期。  相似文献   

17.
18.
Spinel LiMn2O4 is a promising cathode due to its advantages of low-cost, nontoxicity and thermal stability. However, the dissolution of manganese and the phase transformation induce the rapid capacity fade. Surface coating is an effective method to improve its electrochemical performance. In this work, spinel LiMn2O4 modified with perovskite LaCoO3 was prepared using a novel molten salt method. The resulted samples were characterized by X-ray diffraction (XRD), transmission/scanning electron microscopy (TEM/SEM), Fourier transformation infrared (FT-IR), Raman, and X-ray photoelectronic spectroscopy. The content of Mn3+ increased with the LaCoO3 coating accompanied by the increased concentration of oxygen vacancy. LiMn2O4 modified with 2% LaCoO3 shows a higher capacity and cycling stability than others at 0.2 C, while the cathode with 4% LaCoO3 shows the best rate performance at a larger current at 2 and 5 C. This enhanced performance can be attributed to improved interfacial conductivity between the cathode and electrolyte and the protective effects of coating.  相似文献   

19.
The hot corrosion behaviors of Sr(Y0.05Yb0.05Zr0.9)O2.95 (SYYZ) ceramic were investigated in Na2SO4, V2O5, and Na2SO4 + V2O5 salts mixture, respectively. Na2SO4 did not react with SYYZ ceramic at 900, 950 and 1000 °C. m-ZrO2, YVO4 and YbVO4 were the main corrosion products on the SYYZ ceramic surface in V2O5 at 800 and 900 °C, whereas Sr3V2O8 and t-ZrO2 appeared at 1000 °C. In Na2SO4 + V2O5 salts mixture, the corrosion products were Sr3V2O8 and t-ZrO2 at 800 and 900 °C on the SYYZ ceramic surface, however, a new phase of SrZrO3 developed at 1000 °C. The phase transformation and chemical interaction are the primary corrosion mechanisms for degradation of SYYZ ceramic.  相似文献   

20.
《Ceramics International》2020,46(13):21292-21303
Nanosized M-HNTs-MnO2 (Magnetic halloysite nanotubes-manganese dioxide) nanocomposite was synthesized by the reduction-precipitation method followed by the hydrothermal process. The existence of MnO2 nanoflakes on M-HNTs represents 3-D nanostructures without stacking of nanotubes and agglomeration. The sensor-based on M-HNTs-MnO2 nanocomposites exhibits higher sensor response (Rair/Rgas = 35.6) to 100 ppm of acetone gas at operating temperature (150 °C), with a short response-recovery time (3 s/7 s). The M-HNTs-MnO2 nanocomposite sensor shows excellent potential to act as a low cost, low-temperature sensor for acetone gas, with high acetone selectivity under high humidity conditions and with the interference of other gases. The high surface to volume ratio, three-dimensional nanostructure, and strong interactions between M-HNTs and MnO2 nanoflakes are accountable for the improvement of acetone sensing performance. Based on the high acetone selectivity, high stability and fast dynamic response, the M-HNTs and MnO2 sensor is an extremely appropriate candidate for a low-cost acetone sensor, and the projected approach offers a way to develop gas sensors that can be function at low temperatures for a wide variety of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号