首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of dietary fatty acid (FA) composition on lipids and lipoproteins, platelet function and other hemostatic variables as well as on the endogenous formation of DNA adducts of malonaldehyde (MA) in healthy subjects in controlled dietary experiments. The FAs studied were monounsaturated oleic acid (OA, 18:1 n-9), n-6-polyunsaturated linoleic acid (LA, 18:2 n-6), n-3 polyunsaturated alpha-linolenic acid (ALA, 18:3 n-3), and two long-chain, n-3 polyunsaturated FAs, eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3). The results indicated that a high OA and high LA diet had comparable effects on lipids and lipoproteins when they replaced saturated FAs in a diet. Furthermore, the effect of ALA did not differ from that of LA in this respect. Both diets also similarly increased in vitro platelet aggregation when compared with high saturated FA baseline diet. In another study the effect of LA and ALA on platelet function was studied. In this study ALA decreased in vitro platelet aggregation when compared with LA. When ALA was compared with EPA + DHA it was found that platelet function and some coagulation and fibrinolysis parameters were mainly affected in a similar manner by ALA and EPA + DHA treatments. The high LA diet increased the levels of DNA adducts of MA when compared with the effect of the high OA diet. Our findings indicate that the interpretation of the effect of diet, dietary fat or a specific FA on the development of chronic disease is extremely complex.  相似文献   

2.
The effects of n-3 fatty acid supplementation in the form of fresh fish, fish oil, and docosahexaenoic acid (DHA) oil on the fatty acid composition of plasma lipid fractions, and platelets and erythrocyte membranes of young healthy male students were examined. Altogether 59 subjects (aged 19-32 yr, body mass index 16.8-31.3 kg/m2) were randomized into the following diet groups: (i) control group; (ii) fish diet group eating fish meals five times per week [0.38 +/- 0.04 g elcosapentaenoic acid (EPA) and 0.67 +/- 0.09 g DHA per day]; (iii) DHA oil group taking algae-derived DHA oil capsules (1.68 g/d DHA in triglyceride form); and (iv) fish oil group (1.33 g EPA and 0.95 g DHA/d as free fatty acids) for 14 wk. The fatty acid composition of plasma lipids, platelets, and erythrocyte membranes was analyzed by gas chromatography. The subjects kept 4-d food records four times during the study to estimate the intake of nutrients. In the fish diet, in DHA oil, and in fish oil groups, the amounts of n-3 fatty acids increased and those of n-6 fatty acids decreased significantly in plasma lipid fractions and in platelets and erythrocyte membranes. A positive relationship was shown between the total n-3 polyunsaturated fatty acids (PUFA) and EPA and DHA intake and the increase in total n-3 PUFA and EPA and DHA in all lipid fractions analyzed. DHA was preferentially incorporated into phospholipid (PL) and triglyceride (TG) and there was very little uptake in cholesterol ester (CE), while EPA was preferentially incorporated into PL. and CE. The proportion of EPA in plasma lipids and platelets and erythrocyte membranes increased also by DHA supplementation, and the proportion of linoleic acid increased in platelets and erythrocyte membranes in the DHA oil group as well. These results suggest retroconversion of DHA to EPA and that DHA also interferes with linoleic acid metabolism.  相似文献   

3.
In view of the promising future for use of n-3 polyunsaturated fatty acids (PUFA) in the prevention of cancer and cardiovascular diseases, it is necessary to ensure that their consumption does not result in detrimental oxidative effects. The aim of the present work was to test a hypothesis that low doses of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) do not induce harmful modifications of oxidative cell metabolism, as modifications of membrane fatty acid composition occur. Wistar rats received by gavage oleic acid, EPA, or DHA (360 mg/kg body weight/day) for a period of 1 or 4 wk. Fatty acid composition and alpha-tocopherol content were determined for plasma, red blood cell (RBC) membranes, and liver, kidney, lung, and heart microsomal membranes. Susceptibility to oxidative stress induced by tert-butylhydroperoxide was measured in RBC. EPA treatment increased EPA and docosapentaenoic acid (DPA) content in plasma and in all the membranes studied. DHA treatment mainly increased DHA content. Both treatments decreased arachidonic acid content and n-6/n-3 PUFA ratio in the membranes, without modifying the Unsaturation Index. No changes in tissue alpha-tocopherol content and in RBC susceptibility to oxidative stress were induced by either EPA or DHA treatment. The data suggest that EPA and DHA treatments can substantially modify membrane fatty acids, without increasing susceptibility to oxidative stress, when administered at low doses. This opens the possibility for use of low doses of n-3 PUFA for chemoprevention without risk of detrimental secondary effects.  相似文献   

4.
Fish oil is rich in the long chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); typically these fatty acids constitute 20 to 25 g/100 g total fatty acids in fish oil. Feeding rodents diets rich in fish oil has been shown to decrease lymphocyte proliferation and natural killer cell activity. It is not known what level of EPA + DHA is required in the diet to exert these effects. This question was addressed in the current study. Weanling rats were fed on high fat (178 g/kg) diets which contained 4.4 g alpha-linolenic acid (control) or 4.4 g EPA + DHA (4.4 EPA + DHA) or 6.6 g EPA + DHA (6.6 EPA + DHA)/100 g total fatty acids. The n-6 to n-3 polyunsaturated fatty acid ratio was maintained at approximately 7. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet. Spleen lymphocyte proliferation in response to concanavalin A, spleen natural killer cell activity and PGE2 production by spleen leukocytes were reduced by feeding the EPA + DHA diets compared with feeding the control diet; the 4.4 and 6.6 EPA + DHA diets caused very similar reductions. The 4.4 EPA + DHA diet reduced popliteal lymph node weight following a localised graft versus host response; this response was not investigated in rats fed the 6.6 EPA + DHA diet. The reductions in lymphocyte functions and in the in vivo graft versus host response caused by the EPA + DHA diets were similar to those previously reported following the feeding of diets rich in fish oil. Thus, this study shows that diets containing relatively low levels of EPA + DHA (20 to 25% of the level found in fish oil) exert immunomodulatory effects. Furthermore, this study suggests that the maximal effect of EPA + DHA is exerted when these fatty acids constitute a level of less than or equal to 4.4 g/100 g total dietary fatty acids.  相似文献   

5.
Previous studies have shown that exogenous free n-3 polyunsaturated fatty acids (PUFA) can prevent tachyarrhythmias caused by specific agents in isolated cardiac myocytes. However, the question as to whether incorporation of the n-3 PUFA into membrane phospholipids has the same immediate protective effects remained to be answered. To answer this question, we increased the content of n-3 PUFA in the phospholipids of cultured neonatal rat myocytes by growing them 2-3 d in a culture to which eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in 15 microM concentration was added. Analysis of the fatty acid composition of membrane phospholipids revealed a significantly higher level of EPA and DHA (from 0.2 to 7.6% and from 1.2 to 6.5%) in cells supplemented with EPA or DHA, respectively. The responses of the myocytes grown in normal media or in media enriched with the PUFA to arrhythmogenic agents were examined after free fatty acids were removed from the medium and the cells. The arrhythmogenic agents used were the beta-adrenergic agonist isoproterenol or an elevated extracellular concentration of calcium. The results showed that there was no significant difference in the induction of tachyarrhythmias by isoproterenol or by elevated [Ca2+]o in cells grown in media enriched with PUFA, as compared with cells grown in normal media in the absence of the free PUFA. Under the conditions of this study, only the unesterified PUFA were able to protect the cardiomyocytes against induced arrhythmias. There was no antiarrhythmic effect due to an increased fraction of EPA or DHA in membrane phospholipids.  相似文献   

6.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may be biosynthesized from a precursor α-linolenic acid (LNA) or obtained preformed in the diet. Dams were fed four diets with different levels of the various n-3 fatty acids during pregnancy and lactation, and their offspring were weaned to the same diets: “n-3 Deficient,” containing (as % total fatty acids) 0.07% of LNA; “Low LNA” (0.4%); “High LNA” (4.8%); and a “DHA + EPA” diet, containing 0.4% of LNA, 2% DHA, and 2% EPA. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response in C57Bl6 mice. The n-3 Deficient and Low LNA diets caused a substantial deficit in PPI compared to the DHA + EPA diet, whereas the High LNA diet induced a less pronounced, but significant reduction of PPI. These are the first data that demonstrate a deficit in sensorimotor gating in rodents caused by an inadequate amount of the n-3 fatty acids in the diet. Our results differentiate the effects of a High LNA diet from one with added EPA and DHA even though the difference in brain DHA content is only 12% between these dietary groups. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Several studies have shown that n-3 polyunsaturated fatty acids (n-3 PUFA) are able to lower blood pressure (BP) in humans, but large doses of fish oils have been often used. Moreover, most of the studies available in the literature were not able to evaluate the specific effects of n-3 PUFA because they employed fish oils which contain, together with n-3 PUFA, many other different components. The aim of this preliminary study was to evaluate if medium-term supplementation with a moderate dose of highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl esters is able to reduce BP in mild hypertensive patients. Sixteen mild essential hypertensive (diastolic BP: 95-104 mm Hg), non-diabetic, normolipidemic male outpatients and 16 normotensive male controls were recruited to participate in the study. Both hypertensive and control subjects were randomly assigned to receive either EPA and DHA ethyl esters (2.04 g EPA and 1.4 g DHA) as active treatment or olive oil (4 g/day) as a placebo for a period of 4 months. These subjects were followed up with 24-hour ambulatory BP monitoring and blood chemistry analyses at 2 and 4 months of treatment and 2 months after its discontinuation. The intake of n-3 PUFA was checked by red blood cell (RBC) phosphatidylcholine (PC) fatty acid composition. The effect of n-3 PUFA on BP in the active group was maximum after 2 months. Both systolic (-6 mm Hg, p<0.05) and diastolic (-5 mm Hg, p<0.05) BP significantly decreased during the n-3 PUFA ethyl ester supplementation. No further effect was observed at 4 months with a return to baseline values during the recovery period. These data indicate that 4 g/day of highly purified EPA + DHA ethyl esters are able to favorably affect BP in mild hypertensives.  相似文献   

8.
Eicosapentaenoic acid (EPA, 20:5n-3) is less efficiently accumulated in tissue triacylglycerols (TAGs) during fish oil feeding than docosahexaneoic acid (DHA, 22:6n-3) or docosapentaenoic acid (DPA, 22:5n-3), and EPA is preferentially released from the TAG of isolated adipocytes in vitro and adipose tissue in vivo during fasting compared with DHA or DPA. It is not known if this preferential release occurs in vivo under nonfasting conditions or if it is limited to adipose tissue. Accordingly, we have carried out experiments to study the turnover of EPA, DHA, and DPA in the TAG of adipose tissue, liver, and skeletal muscle. Weanling rats were fed diets containing fish oil for 6 weeks and then switched to diets containing only corn oil as the dietary fat for 8 weeks. The fatty acid composition and mass in epididymal fat pads, omental fat, liver, and soleus muscle TAGs were determined weekly for the first 10 weeks and at weeks 12 and 14. Subsequent to the change to the corn oil diet, EPA (20:5n-3), DPA (22:5n-3), and DHA (22:6n-3), which had accumulated during fish oil feeding, were lost from the tissue TAG pools of each tissue examined. After 8 weeks on the corn oil diet, less than 10% of the accumulated EPA, DPA, and DHA remained in the liver and muscle. The loss of EPA, DPA, and DHA from epididymal fat pad was slower. In each tissue, EPA was lost more rapidly than DPA or DHA. This selective loss of EPA relative to DHA or DPA may explain the previously reported underrepresentation of EPA compared with DHA or DPA in tissue TAG.  相似文献   

9.
The effects of alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) on hemostatic factors were compared. Healthy subjects (29 women and 17 men aged 20-44 y) received either linseed oil (average ALA intake: 5.9 g/d) or fish oil plus sunflower oil (average EPA + DHA intake: 5.2 g/d) for 4 wk. The supplemented amount of fat was 1.19 mg/kJ (1 g/200 kcal) calculated energy expenditure. Stability of habitual diets was monitored. Blood samples were collected at baseline, at the end of the experimental period, and after a 12-wk follow-up period. Different changes in the study groups were seen only in serum cholesterol and triacylglycerols, platelet fatty acid composition, and ADP-induced platelet aggregation. The treatments did not differ in their effects on collagen-induced platelet aggregation and thromboxane production, aggregation to the thromboxane A2 mimic I-BOP, urinary excretion of 11-dehydro-thromboxane B2 and beta-thromboglobulin, bleeding time, plasma fibrinogen concentration, antithrombin III activity, factor VII coagulant activity, or activity of plasminogen activator inhibitor 1. The results indicate that supplemented ALA from vegetable oil and EPA and DHA from a marine source have largely parallel effects on hemostatic factors.  相似文献   

10.
EPA, DHA, C15SCH2COOH (n-3), C15SCH2COOH (n-6) and C18SCH2COOH (n-3) are extensively incorporated into phospholipids and triacylglycerol in rat hepatocytes after 24 h incubation with 80 microM fatty acid/derivative. Only traces of polyunsaturated 3-oxa fatty acids (C15OCH2COOH, C18OCH2COOH) were incorporated. C15-S-butyric acid (n-3) is a stronger inhibitor of delta6-desaturase in rat liver-microsomes than C15SCH2COOH (n-3), C15-S-propionic acid (n-3), EPA and DHA. It inhibits delta5-desaturase in a similar manner to EPA and DHA. Arachidonic acid and C15SCH2COOH, (n-6) are better substrates for PGH-synthase than EPA and C15SCH2COOH, (n-3), showing the inhibitory effect of the n-3 bond. The n-3 polyunsaturated fatty acids, including the sulfur-substituted fatty acid derivatives, are poor substrates for PGH-synthase. However, they inactivate the PGH-synthase activity at least as efficiently as arachidonic acid. C15SCH2COOH (n-3), C15S(CH2)2COOH (n-3) and C18SCH2COOH (n-3) induce peroxisomal beta-oxidation more than EPA and DHA.  相似文献   

11.
N-3 polyunsaturated fatty acid (PUFA)-rich diets are associated with suppression of cell-mediated immune responses, but the mechanisms are unclear. Specific immune responses are initiated by antigen-presenting cells (APC). We have previously shown in vitro that the n-3 PUFA, eicosapentaenoic acid (EPA), inhibits the expression of HLA-DR, an MHC class II molecule required for normal APC function on human blood monocytes. In contrast, docosahexaenoic acid (DHA) enhanced the expression of this molecule on unstimulated monocytes, but both n-3 PUFA suppressed its expression on interferon-gamma (IFN-gamma)-activated monocytes. In the present study we show that when EPA and DHA were combined at the same ratio as is commonly found in fish oil supplement capsules (3:2) there was no significant effect in vitro on the expression of HLA-DR on unstimulated monocytes, but the expression on IFN-gamma-activated monocytes remained significantly inhibited. In the same in vitro system a significant reduction in the ability of IFN-gamma-activated monocytes to present tetanus toxoid antigen to autologous lymphocytes was observed following culture with the combined n-3 PUFA. These findings support previous animal studies which suggest that n-3 PUFA can inhibit the antigen-presenting function of mononuclear phagocytes.  相似文献   

12.
Interest in the potential cardiovascular benefits of omega-3 long chain polyunsaturated fatty acids has been largely focused on possible antiatherothrombotic effects. In addition, however, definitive antiarrhythmic effects of these dietary omega-3 fatty acids have been reported by Charnock & McLennan. Our studies commenced with the observation that two of these fatty acids, eicosapentaenoic (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA) prevented contracture and fibrillation of isolated neonatal cardiac myocytes when exposed to toxic levels of ouabain (0.1 mM). This protection was associated with prevention of excessively high intracellular calcium concentrations in the myocyte. Further, it was shown that these fatty acids modulate calcium currents through L-type calcium channels and that the effect occurs within a few minutes of adding EPA or DHA to the medium perfusing the cultured cardiac myocytes. Infusing an emulsion of the omega-3 fatty acids intravenously just prior to compression of a coronary artery in a conscious, prepared dog will prevent the expected subsequent ischemia-induced ventricular fibrillation.  相似文献   

13.
The influence of dietary (n-3) compared with (n-6) polyunsatured fatty acids (PUFA) on the lipid composition and metabolism of adipocytes was evaluated in rats over a period of 1 week. Isocaloric diets comprised 16.3 g/100 g protein, 53.8 g/100 g carbohydrate and 21.4 g/100 g lipids, the latter containing either (n-3) PUFA (32.4 mol/100 mol) or (n-6) PUFA (37.8 mol/100 mol) but having identical contents of saturated, monounsaturated and total unsaturated fatty acids and identical polyunsaturated to saturated fatty acid ratios and double bond indexes. Despite comparable food intake, significantly smaller body weight increments and adipocyte size were observed in rats of the (n-3) diet group after feeding for 1 wk. Rats fed the (n-3) diet also had significantly lower concentrations of serum triglycerides, cholesterol and insulin compared with those fed the (n-6) diet, although levels of serum glucose and free fatty acids did not differ in the two dietary groups. In the (n-6) diet group, the (n-6) and (n-3) PUFA contents of plasma triglycerides, free fatty acids and phospholipids were 30-60% higher and 60-80% lower, respectively, than in the (n-3) diet group, whereas adipocyte plasma membrane phospholipids showed a significantly higher unsaturated to saturated fatty acid ratio and greater fluidity. Glycerol release in response to noradrenaline was significantly higher in the adipocytes of rats fed the (n-3) diet, whereas the antilipolytic effect of insulin generally did not differ in the two groups. Finally, insulin stimulated the transport of glucose and its incorporation into fatty acids to a lesser extent in adipocytes of (n-3) diet fed rats compared with (n-6) diet fed rats. This reduction in the metabolic effects of insulin in rats fed a (n-3) diet for 1 wk could be related to smaller numbers and a lower binding capacity of the insulin receptors on adipocytes and/or to a lesser degree of phosphorylation of the 95 kDa beta subunit of the receptor. In conclusion, dietary intake for 1 wk of (n-3) rather than (n-6) PUFA is sufficient to induce significant differences in the lipid composition and metabolic responses to insulin of rat adipocytes.  相似文献   

14.
The long-term effects of consumption of marine long-chain n-3 polyunsaturated fatty acids (PUFA) on atherosclerosis in the rabbit were examined. Female Dutch rabbits were fed purified diets, containing 40 energy% total fat, for a period of 2.5 years. To study the dose response relationship between fish oil intake and atherosclerosis, four diets were formulated with fish oil levels being 0, 1, 10 and 20 energy%. A fifth and sixth group were fed an alpha-linolenic acid-(C18:3, n-3) and linoleic acid-(C18:2, n-6) rich diet, respectively. Every 6 weeks, blood samples were taken for determination of clinical chemical parameters, triacylglycerol and total cholesterol levels. Feeding 10 and 20 energy% fish oil containing diets, resulted in an increase of liver enzymes (AST, ALT and ALP). Histological evaluation of the liver also revealed adverse effects of fish oil containing diets. Triacylglycerol blood levels were similar in all groups, and remained constant throughout the study. Total cholesterol levels in blood was significantly lower in the animals fed a linoleic acid-rich diet, as compared with the other five groups. An n-3 long-chain PUFA concentration dependent increase in aorta plaque surface area was observed in the fish oil groups. A significant positive relationship was found between the group mean score for severity of liver pathology and the aorta plaque surface area. These results indicate that the long-chain n-3 polyunsaturated fatty acids in fish oil may be hepatotoxic to the herbivorous rabbit, which may interfere with the outcome of atherosclerosis studies. This finding necessitates the exclusion of liver pathology in experimental studies on atherosclerosis in animal models.  相似文献   

15.
It is known that n-3 polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) suppress immunity as compared with n-6 PUFA such as linoleic acid (LA), but the mechanism involved in this phenomenon is still unclear. The present study was designed to assess the effect of dietary DHA on the surface molecules involved in T cell proliferation. Weanling male C57BL/6 mice were divided into four dietary groups that were fed a 10% fat diet for 4 weeks varying in amounts of DHA and LA. As the dietary DHA concentration increased, the surface expression of CD4 and CD8 on splenic T cells decreased, while that of CD28 increased. The surface expression of CD3, however, was invariable in all dietary groups. DNA synthesis of splenic T cells, induced by CD3 crosslinkage with anti-CD3 epsilon monoclonal antibody in the presence of CD28-mediated costimulation, increased as the DHA concentration was elevated. These observations suggest that diets rich in DHA exert some of their immunomodulatory effects by a downregulation of surface expression of CD4 and CD8 and by an upregulation of CD28-mediated costimulatory signal.  相似文献   

16.
OBJECTIVES: To ascertain the effects of dietary omega-3 (n-3) fatty acids on biochemical and histopathologic components of the inflammatory stage of wound healing. ANIMALS: 30 purpose-bred Beagles. PROCEDURE: Dogs were allotted to 5 groups of 6. Each group was fed a unique dietary fatty acid ratio of omega-6 to n-3--diet A, 5.3:1; diet B, 10.4:1; diet C, 24.1:1; diet D, 51.6:1; and diet E, 95.8:1. Dogs were fed once daily for 12 weeks, then biopsy specimens were taken from 4-day-old wounds of each dog and analyzed by gas chromatography-mass spectrometry for: prostaglandin E2 (PGE2) metabolites, and ratios of omega-6 to n-3 fatty acids, arachidonic acid (AA) to eicosapentaenoic acid (EPA), adrenic acid to docosahexaenoic acid, and PGE2 to prostaglandin E3 (PGE3) metabolites. RESULTS: Qualitative analysis was carried out on AA, EPA, adrenic acid, docosahexaenoic acid, and the major metabolite from the PGE2 and PGE3 pathway. These molecules were further quantified with respect to diet to determine significant differences. By analysis of the AA-to-EPA ratio, diet A was different from diets D and E and diets B and C were different from diet E (P < 0.05). By analysis of the PGE2-to-PGE3 metabolite ratio, diet A was different from diet E (P < 0.05). Though biochemical analysis indicated dietary dependence, histopathologic data indicated no significant difference with respect to diet groups. CONCLUSION: The biochemical component of the inflammatory stage of wound healing can be manipulated by diet. CLINICAL RELEVANCE: Omega-3 fatty acid-enriched diets can be used to control inflammation associated with dermatologic conditions.  相似文献   

17.
The cardiovascular effects of a partially purified extract of fish oil, enriched in the n-3 series fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were studied in stroke-prone spontaneously hypertensive rats (SHR-SP) fed with high- and low-sodium diets during 5 weeks. Addition of salt to the low-salt control diet at a level commonly found in human food items (6% NaCl of the dry weight of the diet) produced a remarkable rise in blood pressure, an increase in left ventricular weight-to-body weight ratio (LVH-index) and an increase in kidney weight-to-body weight ratio (RH-index). Fish oil (20% of the dry weight of the diet) did not significantly influence the blood pressure or LVH-index or RH-index during the low-salt control diet. However, fish oil completely prevented the remarkable rise in blood pressure and clearly antagonized the rise of both LVH- and RH-indices, induced by the high-salt diet. The fish oil supplementation increased the levels of the polyunsaturated fatty acids of the n-3 series and decreased those of the n-6 series in plasma and kidney, irrespective of the salt content of the diet. Fish oil lowered serum thromboxane B2 concentration by approximately 75%. During the high-salt diet, fish oil markedly decreased water intake and urine volume, and increased urinary sodium concentration by about 60%. Our findings show that, in addition to an antihypertensive effect, fish oil also decreases LVH and RH. These effects appear to be due to an improved ability to excrete sodium and could be explained by the observed changes in the fatty acid composition and metabolism.  相似文献   

18.
We have evaluated the effects of three different 18:3n-6, 20:5n-3 and 22:6n-3 fatty acid combinations on essential fatty acid (EFA) metabolism in rat cultured cardiomyocytes. The desaturating/elongating activities for linoleic (LA) and alpha-linolenic acid (ALA) were evaluated by radiolabeling the cells with 1-[14C]LA or 1-[14C]ALA and the fatty acid pattern of cardiomyocytes was assessed by gas chromatography. LA and ALA conversion to more unsaturated metabolites was reduced by increasing respectively n-3 and n-6 fatty acid concentration in the media. The all three combinations used reduced the saturated and increased the polyunsaturated fatty acid content of cardiomyocytes. The n-6/n-3 fatty acid ratio did not change compared to control cells in cardiomyocytes receiving the highest amount of 18:3n-6 and the lowest amounts of n-3 fatty acids. This combination may be suitable for modifying EFA desaturating/elongating activities without altering the physicochemical parameters which are related to the correct balance between n-6 and n-3 fatty acid content.  相似文献   

19.
In the monocytic THP-1 cells, the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor simvastatin (5 microM) enhances the conversion of exogenous linoleic (18:2 n-6) and eicosapentaenoic (20:5 n-3) acids to their long-chain polyunsaturated fatty acid (LC-PUFA) derivatives, and this effect is associated with changes in the desaturation steps. In addition, formation of monounsaturated fatty acids from endogenously synthesized precursors is increased. These metabolic changes lead to elevated LC-PUFA and fatty acid (FA) unsaturation in cells. The effects of simvastatin on FA metabolism are associated with increased synthesis of triglycerides from glycerol. The dose-effect relationships for the activity of simvastatin on total linoleic acid (LA) conversion and cholesterol synthesis reveal that enhancement of PUFA metabolism is already maximal at 0.5 microM simvastatin, whereas cholesterol synthesis is further inhibited by concentrations of simvastatin up to 5 microM. The effects of 5 microM simvastatin on PUFA metabolism are partially prevented by mevalonate (1 mM) and geranylgeraniol (5 microM) but not by farnesol (10 microM). These data indicate that HMG-CoA inhibitors have profound effects on PUFA metabolism, and that the pathways for cholesterol and PUFA synthesis are mutually modulated.  相似文献   

20.
The effects of different dietary oils on the fatty acid compositions of liver phospholipids and the desaturation and elongation or [1-14C]18:3n-3 and [1-14C]18:2n-6 were investigated in isolated hepatocytes from Atlantic salmon. Atlantic salmon smolts were fed diets containing either a standard fish oil (FO) as a control diet, a 1:1 blend of Southern Hemisphere marine oil and tuna orbital oil (MO/TO), sunflower oil (SO), borage oil (BO), or olive oil (OO) for 12 wk. The SO and BO diets significantly increased the percentages of 18:2n-6, 18:3n-6, 20:2n-6, 20:3n-6, and total n-6 polyunsaturated fatty acids (PUFA) in salmon liver lipids in comparison with the FO diet. The BO diet also increased the percentage of 20:4n-6. Both the SO and BO diets significantly reduced the percentages of all n-3 PUFA in comparison with the FO diet. The OO diet significantly increased the percentages of 18:1n-3, 18:2n-6, total monoenes, and total n-6 PUFA in liver lipids compared to the FO diet, and the percentages of all n-3 PUFA were significantly reduced. With [1-14C]18:3n-3, the recovery of radioactivity in the products of delta 6 desaturation was significantly greater in the hepatocytes from salmon fed SO, BO, and OO in comparison with the FO diet. The BO diet also increased the recovery of radioactivity in the products of delta 5 desaturation. Only the BO diet significantly affected the desaturation of [1-14C]18:2n-6, increasing recovery of radioactivity in both delta 6- and delta 5-desaturation products. In conclusion, dietary BO, enriched in gamma-linolenic acid (18:3n-6), significantly increased the proportions of both 20:3n-6 and 20:4n-6 in salmon liver phospholipids and also significantly increased the desaturation of both 18:2n-6 and 18:3n-3 in salmon hepatocytes. The possible relationships between dietary fatty acid composition, tissue phospholipid fatty acid composition, and desaturation/elongation activities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号