首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 102 毫秒
1.
纳米高岭土和石墨填充PTFE复合材料摩擦磨损性能   总被引:1,自引:0,他引:1  
采用模压法制备石墨和纳米高岭土填充的聚四氟乙烯(PTFE)复合材料,在往复式滑动摩擦磨损试验机上测试了其的干滑动摩擦磨损性能,试验机往复频率为1.0 Hz.用扫描电镜观测和分析试样的磨损表面.结果表明:石墨和纳米高岭土共同填充的PTFE,在改善其耐磨性的同时,又保持了低的摩擦因数,其中含10%高岭土和5%石墨的PTFE复合材料表现最佳,稳定阶段的摩擦因数保持在0.11左右,耐磨性比纯PTFE提高了大约90倍.  相似文献   

2.
纳米Cu粉填充碳纤维/PTFE复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
考察纳米Cu粉含量、粒径对碳纤维/PTFE复合材料摩擦磨损性能的影响,采用扫描电子显微镜分析磨损面和对偶面转移膜形貌,并探讨其磨损机制。结果表明:纳米Cu粉能提高碳纤维/PTFE复合材料的耐磨性,在高载荷下,纳米Cu粉的增强效果更加明显;纳米Cu粉的粒径越小,复合材料的耐磨性越好;添加质量分数0.3%纳米Cu粉的碳纤维/PTFE复合材料耐磨性最优,1.4 m/s,200 N下实验条件下,其磨损率比未添加时降低了45%;SEM分析显示纳米Cu粉能在对偶面上形成平整致密的转移膜,具有显微增强作用。  相似文献   

3.
纳米金属粉填充Ekonol/PTFE复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
评价了分别用不同体积含量的纳米镍粉和纳米铜粉填充聚苯酯/聚四氟乙烯(Ekonol/PTFE)复合材料体系的力学性能,利用M-200型磨损试验机研究了纳米Ni、纳米Cu含量对Ekonol/PTFE复合材料摩擦学性能的影响,借助扫描电子显微镜和能谱分析手段考察试样磨损表面和磨屑,并探讨其摩擦磨损机制。结果表明,纳米Ni能在一定范围内增加Ekonol/PTFE复合材料的冲击强度;纳米金属粉填入量较小时均能增加复合材料的洛氏硬度。纳米Ni与纳米Cu均能增加Ekonol/PTFE复合材料的摩擦因数并降低磨损率。其原因在于纳米金属粉在复合材料摩擦表面富集,通过金属分子间的吸引作用,增大复合材料的摩擦因数。  相似文献   

4.
以纳米氧化锌(ZnO)和纳米蒙脱土(MMT)及聚四氟乙烯(PTFE)作为复合填料,通过热压成型工艺制备了纳米ZnO-MMT及PTFE填充超高分子量聚乙烯(UHMWPE)复合材料,采用销-盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响,用扫描电子显微镜观察了复合材料磨损表面形貌。结果表明当PTFE和MMT的填充量均保持为质量分数6%,填充纳米ZnO质量分数为4%~6%时的复合材料可获得较好的摩擦磨损性能,与不含纳米ZnO的复合材料相比,其摩擦因数最低下降了11.1%,而磨损率下降了83.3%。当复合填料中纳米ZnO含量较低时,复合材料的磨损机制主要表现为不同程度的粘着磨损,但当复合填料中纳米ZnO含量较高时,复合材料的磨损机制主要表现不同程度的粘着磨损和磨粒磨损,同时其复合材料的摩擦磨损性能出现了恶化现象。  相似文献   

5.
采用机械共混-冷压成型-烧结的工艺制备了PEEK、PPS填充PTFE基粘弹.摩擦型阻尼材料,用环-块式磨损试验机研究了在干摩擦条件下的摩擦磨损性能;用扫描电子显微镜观察磨损表面形貌和内部组织结构。结果表明:混合填充PEEK和PPS时,2种填充物的比例对材料的摩擦因数影响不大,当二者含量相近时,摩擦因数最大;填充物对磨损性能的影响与对摩擦因数的相同;随着PEEK含量的增加和PPS含量的减少,材料的磨损方式由疲劳剥落磨损为主转变为犁削、粘着磨损;PTFE含量的增加,使得复合材料的摩擦因数减小,而磨损有所增大。综合考虑认为,PTFE与适当比例的PEEK/PPS混合填充,具有合适的摩擦因数和较好的耐磨性,能够满足特殊工况下阻尼材料的需要。  相似文献   

6.
为了改善聚四氟乙烯高磨耗的缺点,通过冷压烧结成型工艺制备4种低含量鳞片石墨填充改性聚四氟乙烯(PTFE)复合材料,探究其在较高载荷(0.8 MPa)及不同转速下的摩擦磨损情况。采用三维视频显微镜观察样品的表面磨痕深度,借助扫描电镜观察摩擦表面形貌并分析磨损机制。结果表明:在较高载荷下石墨填充PTFE复合材料的摩擦因数和体积磨损率都较纯PTFE有一定程度的降低;且当石墨填充质量分数为5%时,复合材料的摩擦因数和体积磨损率降到最低,在载荷为0.8 MPa、转速为80 r/min时较纯PTFE分别降低了19.7%和84.25%;在较高载荷下,随着石墨含量的增大,复合材料的磨损机制逐渐由犁耕磨损向黏着磨损转变,且当石墨质量分数为10%时,出现轻微的疲劳磨损。  相似文献   

7.
采用共混-冷压-烧结制备工艺制备MoS2、聚酰亚胺和芳纶纤维填充的聚苯酯/聚四氟乙烯(POB/PTFE)复合材料,在MRH-3型高速环块摩擦磨损试验机和WD-W-200型万能材料试验机上考察不同填料对POB/PTFE复合材料力学性能和摩擦学性能的影响。实验结果表明:聚酰亚胺和芳纶与POB的协同润滑与减磨效应降低了POB/PTFE复合材料的摩擦因数与磨损量,并提高了复合材料的压缩模量和压缩强度;与MoS2/POB/PTFE复合材料相比,聚酰亚胺和芳纶纤维填充的POB/PTFE复合材料有着更好的力学性能、摩擦稳定性和耐磨性。  相似文献   

8.
利用真空热压烧结技术制备了不同碳纤含量的碳纤维/聚醚醚酮(CF/PEEK)复合材料,采用热导率分析仪和热重测试仪对材料的热学性能进行表征,并利用多功能摩擦磨损试验机、三维形貌轮廓仪、扫描电子显微镜和摩擦静电计对材料的摩擦磨损性能和抗摩擦静电性能进行分析。分析结果表明:随着CF添加量的增加,复合材料摩擦因数、磨损率和摩擦静电电压先降低后升高,当CF添加量(质量分数)为20%时,摩擦因数、磨损率和摩擦静电电压达到最低,分别为0.247、5.6×10-6 mm/(N·m)和3.3 V,证明此种方法制备的20%CF/PEEK材料具有优异的摩擦磨损性能和抗静电性能。CF/PEEK复合材料磨损机理以黏着磨损为主,并且伴随着轻微的磨粒磨损。  相似文献   

9.
纳米材料填充改性PTFE力学性能的研究   总被引:4,自引:0,他引:4  
利用四种纳米粒子填充改性聚四氟乙烯(PTFE),并研究了改性PTFE复合材料的物理机械性能。结果表明:纳米粒子会使PTFE的力学性能发生变化,提高了复合材料的硬度;但会使复合材料的拉伸强度和断裂伸长率降低。  相似文献   

10.
用M-2000摩擦磨损试验机对纳米碳黑和石墨填充PTFE复合材料进行了摩擦磨损性能研究,用扫描电子显微镜(SEM)对磨损表面进行观察.结果表明:2种碳纳米能够提高PTFE复合材料的耐磨性,其中纳米碳黑填充效果最佳.纳米碳黑和纳米石墨2种碳纳米的最佳添加量分别为7%和5%(质量分数).纳米石墨可以减小PTFE复合材料的摩擦因数,而纳米碳黑使得PTFE复合材料的摩擦因数增大,且含量越高,复合材料摩擦因数增幅越大.结晶型纳米石墨与PTFE基体的相容性较差,而无定形纳米碳黑与PTFE基体的相容性较好.  相似文献   

11.
In this study, the tribological properties of polytetrafluoroethylene (PTFE) composites filled with polyetheretherketone (PEEK) and nano-Al2O3 particles were studied using a block-on-ring wear tester. The tribological performance of the composites was affected by the experimental parameters (sliding speed, normal load, and environmental temperature) and the composites achieved a high-speed sliding friction state. The results showed that the PEEK and nano-Al2O3 particles significantly improved the wear resistance of the PTFE composites. In addition, the nano-Al2O3 particles increased the hardness of the composites and enhanced the mechanical properties to enable applications in a wider range of industrial fields. The effects of the sliding speed and normal load on the tribological properties were more significant than that of the environmental temperature. In addition, the entire wear process was divided into three stages (the initial wear stage, severe wear transition stage, and ultralow stable wear stage), according to the evolution of the tribological characteristics (wear rate, morphology of the worn surface and transfer film, and wear debris morphology).  相似文献   

12.
利用往复式摩擦磨损实验机,对聚四氟乙烯(PTFE)及石墨和MoS2填充的PTFE复合材料的摩擦磨损性能进行了实验,考察了载荷、速度以及对摩时间的影响,并利用光学显微镜对PTFE复合材料的摩擦磨损表面进行了观察。结果表明,填加了石墨和MoS2的PTFE,由于石墨和MoS2一方面起到了润滑作用,另一方面阻止了PTFE带状大面积破坏,因而使得PTFE的摩擦因数降低,耐磨性提高。加入石墨和MoS2后PTFE的磨损机制由以犁沟效应和粘着磨损为主变为以磨粒磨损为主。  相似文献   

13.
通过机械搅拌和超声分散制备纳米ZnO填充PTFE复合材料,研究纳米ZnO填充量对复合材料力学及摩擦磨损性能的影响。结果表明:当ZnO质量分数小于3%时,复合材料的拉伸强度与纯PTFE相比略有增高;复合材料的密度、硬度、摩擦因数随ZnO填充量的增加而逐渐增大;当ZnO填充质量分数为1%~3%时,复合材料的磨耗量大幅下降,但若继续增加ZnO填充量,复合材料的磨耗量却变化不大。  相似文献   

14.
研究了PTFE填充量对高岭土基矿物聚合物复合材料的力学性能和摩擦磨损性能的影响,利用XRD、SEM分析了材料的微观结构和磨损表面形貌。结果表明:填充PTFE对矿物聚合物材料的力学性能会有一定程度的降低,但可以有效改善复合材料的摩擦磨损性能,当PTFE体积分数为30%时,摩擦因数和磨损率均达到最低,分别为0.429和1.22×10-5mm3/N·m;当PTFE含量较高时,磨损机理除了磨粒磨损外还有对偶件的粘着转移。  相似文献   

15.
以石英粉为填料,通过机械混合和冷压烧结的方法制备石英粉填充改性聚四氟乙烯复合材料,研究复合材料的硬度、抗拉强度、压缩与回复性能和长期压缩蠕变性能.借助SEM探讨拉伸断面的微观结构.结果表明:加入适量的石英粉可以提高复合材料的硬度、抗蠕变性能,改进PTFE压缩与回复性能;但由于存在相界面缺陷,复合材料的抗拉强度降低.当粉石英质量分数在20%-30%之间时,其综合性能能够满足密封材料的要求.  相似文献   

16.
硫酸钙晶须填充PTFE复合材料的摩擦学性能研究   总被引:1,自引:0,他引:1  
用硫酸钙晶须(CSW )填充改性聚四氟乙烯(MVE),采用模压成型工艺制备不同硫酸钙晶须含量的PTFE/CSW复合材料;利用摩擦磨损试验机研究硫酸钙晶须对PTFE/CSW复合材料摩擦学性能的影响,利用扫描电子显微镜对PM复合材料的磨损表面进行微观分析.结果表明:填充硫酸钙晶须提高PTFE复合材料的耐磨损性能,但复合材料的摩擦因数略高于纯PTFE;纯PTFE的磨损机制为黏着磨损,而PTFE/CSW复合材料的磨损机制为轻微磨粒磨损和黏着磨损共同作用.当硫酸钙晶须质量分数大于10%时,PTFE/CSW复合材料的磨损机制逐渐转变为严重的磨粒磨损.  相似文献   

17.
纳米Al2O3对聚四氟乙烯工程材料性能的影响   总被引:11,自引:1,他引:11  
用压制和烧结的方法,制备了纳米Al2O3和聚四氟乙烯(PTFE)的复合材料。研究了纳米Al2O3粒子对PTFE的摩擦、磨损、硬度、耐冲击强度等性能的影响。结果表明:纳米Al2O3粒子不仅显著地提高了PTFE耐磨性,而且降低了PTFE的摩擦系数,同时使PTFE的硬度增大。对作用机理进行分析和探讨,提出了“纳米粒子在摩擦磨损表面产生富积及重新嵌入“的观点,为材料的改性研究提供参考。  相似文献   

18.
短玻纤填充PTFE复合材料磨损性能研究   总被引:6,自引:0,他引:6  
用机械共混、冷压成型和烧结的方法制备了不同质量分数(10%~40%)的短玻纤填充PTFE复合材料样品。用MM-200型磨损试验机评价了不同样品在于摩擦定载荷条件下的磨损性能;用扫描电子显微镜(SEM)对试样的磨损表面进行了观察分析。结果表明:在所采用的实验条件下,随短玻纤含量的增加,抗磨损性能先增大后减小,在含量为30%取得最佳抗磨损性能。  相似文献   

19.
不同气氛环境中纳米Al2O3/PTFE复合材料摩擦磨损特性研究   总被引:1,自引:0,他引:1  
利用QG-700高温气氛摩擦磨损试验机, 考察了PTFE及其纳米Al2O3复合材料在干摩擦条件下,在氧气、50%氧气/50%氮气、空气及氮气等气氛环境中的摩擦磨损特性.采用JSM-5610LV型扫描电子显微镜对摩擦表面进行观察,采用EDAX能谱分析仪分析表面成分,研究了干摩擦条件下气氛对复合材料摩擦学性能影响的机制.结果表明:在试验研究范围内,纳米Al2O3的加入可减小PTFE复合材料的磨损量,提高材料的抗磨性能;PTFE和3%Al2O3/PTFE复合材料在氧气环境气氛下的摩擦因数最小,而在氧气和氮气环境气氛下的摩擦因数最大,但磨损量最小;氧气气氛环境最有利于提高PTFE及其复合材料的摩擦学综合性能,氮气环境次之,氧气和氮气环境则有利于增强材料的抗磨性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号