首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used a four-terminal plunge probe to measure myocardial resistivity in two directions at three sites from the epicardial surface of eight open-chest pigs in-vivo at eight frequencies ranging from 1 Hz to 1 MHz. We calibrated the plunge probe to minimize the error due to stray capacitance between the measured subject and ground. We calibrated the probe in saline solutions contained in a metal cup situated near the heart that had an electrical connection to the pig's heart. The mean of the measured myocardial resistivity was 319 ohm x cm at 1 Hz down to 166 ohm x cm at 1 MHz. Statistical analysis showed the measured myocardial resistivity of two out of eight pigs was significantly different from that of other pigs. The myocardial resistivity measured with the resistivity probe oriented along and across the epicardial fiber direction was significantly different at only one out of the eight frequencies. There was no significant difference in the myocardial resistivity measured at different sites.  相似文献   

2.
The apparent resistance of a finite-thickness layer measured with a four-electrode plunge probe depends on the electrode insertion depth, electrode spacing, and layer thickness, as well as the resistivity ratio of an underlying layer. A physical model consisting of air, a saline solution layer, and an agar layer simulates the real situation of resistivity measurement. The saline layer represents the finite-thickness layer whose resistivity is to be measured by a plunge electrode probe, and the agar layer represents an underlying perturbing layer. A micropositioner controls the insertion depth of the four electrodes into the saline solution. With the apparent resistance measured on a semi-infinite-thickness layer of saline solution as standard, measurement results show decreasing apparent resistance and increasing error with increasing electrode insertion depth. This information is important for correct measurement of myocardial resistivity in vivo and in vitro.  相似文献   

3.
An in vivo resistivity measurement system, based on the 4-electrode reflection-coefficient technique that nondestructively measures the complex resistivity of cochlear tissues, is described. Details of the theory and instrumentation used for noninvasive measurement of resistivity are presented. In vitro experiments both characterize the accuracy of the proposed resistivity measurement system and establish general criteria for ensuring that a particular theoretical model accurately represents the experimentally measured geometry. 2 Idealized geometries (2-layer planar and 2-layer spherical) are measured experimentally; error analyses using experimental results describe the maximum error with which the experimental system noninvasively estimates resistivity from experimental reflection coefficient measurements. The precise accuracy of a noninvasive resistivity estimate depends on both the variability for experimentally measuring the reflection coefficient of a particular geometry and the average value of the measured reflection coefficient. For example, 2-point measurements of an in vitro 2-layer planar interface allow noninvasive estimation of complex resistivity with total errors of less than 1%. In addition to characterizing accuracy of resistivity estimates for different in vitro geometries, 2 general criteria were established  相似文献   

4.
We studied via computer simulation the effects of electrode diameter, electrode length, interelectrode spacing, and tissue size on the accuracy of measured tissue resistivities and anisotropy ratios obtained with the widely used four-electrode technique. Such measurements commonly assume an ideal situation in which the four electrodes are infinitesimally small and the tissue is semi-infinite. Our study shows that these geometric factors can significantly affect measured resistivities, particularly for anisotropic tissues. The measured anisotropy ratio is decreased by either (1) increasing the electrode diameter or length relative to the interelectrode spacing of the probe or (2) decreasing tissue size. We have provided an equation for estimating errors in the measured anisotropy ratio from the parameters of electrode and tissue geometries. The simulation findings are supported by our in vitro experimental results  相似文献   

5.
Closed-loop control techniques for the restoration of locomotion of paraplegic subjects are expected to improve the quality of functional neuromuscular stimulation (FNS). We investigated the use of accelerometers for the assessment of feedback parameters. Previously, the possibility of angle assessment of the lower extremities using accelerometers, but without integration, was demonstrated. The current paper evaluates and assesses this method by an error and sensitivity analysis using healthy subject data. Of three potential error sources, the reference system, the accelerometers, and the model assumptions, the last was found to be the most important. Model calculations based on data obtained by the Elite video motion analysis system showed the rigid-body assumption error to be dominant for high frequencies (greater than 10 Hz), with vibrations in the order of 1 mm resulting in errors of one radial or more. For low frequencies (less than 5 Hz), the imperfect fixation of the accelerometers combined with a nonhinge type knee joint gave an error contribution of +/- 0.03 rad. The walking pattern was assumed to be two-dimensional which was shown to result in an error of +/- 0.04 rad. Accelerations due to rotations of the segments could be neglected. The total error computed for low frequencies (+/- 0.07 rad) was comparable to the experimental difference between the current and the reference system.  相似文献   

6.
In electrical impedance tomography, errors due to stray capacitance may be reduced by optimization of the reference phase of the demodulator. Two possible methods, maximization of the demodulator output and minimization of reciprocity error have been assessed, applied to each electrode combination individually, or to all combinations as a whole. Using an EIT system with a single impedance measuring circuit and multiplexer to address the 16 electrodes, the methods were tested on resistor-capacitor networks, saline-filled tanks and humans during variation of the saline concentration of a constant fluid volume in the stomach. Optimization of each channel individually gave less error, particularly on humans, and maximization of the output of the demodulator was more robust. This method is, therefore, recommended to optimize systems and reduce systematic errors with similar EIT systems.  相似文献   

7.
RF ablation uses RF current to heat and kill cancer applied via an electrode inserted under image guidance. Tumor has about half the electrical resistivity of normal tissue below 20 kHz, but similar resistivity above 500 kHz. We placed normal porcine liver tissue in contact with agar gel having similar resistivity as tumor within 20-450 kHz. A needle electrode was placed with half of the electrically active tip in each layer. We performed ablation with electric current applied for 12 min at 30 W, either at 20 or 450 kHz (n = 7 each), while measuring temperature via thermocouples 4 and 8 mm from the electrode. Mathematical heat-transfer models were created of an equivalent configuration and temperature profile determined at both frequencies. At 8-mm distance, at 450 kHz, tumor gel phantom and normal tissue obtained similar temperatures (57.5 ± 1.4 versus 58.7 ± 2.5 (°)C); at 20 kHz, tumor phantom obtained significantly higher temperatures than normal tissue (65.6 ± 2.0 versus 57.2 ± 5.6 (°)C, p < 0.01). Computer models confirm these results, and show the ablation zone diameter to be larger within the tumor phantom at 20 kHz compared to 450 kHz. Heating at low RFs may thus allow targeted heating of tumor tissue and reduced heating of normal tissue.  相似文献   

8.
We developed a small-sized micromachined probe for the measurement of biological properties using microelectromechanical systems (MEMS) technology. We also experimentally showed the suitability of the micromachined probe for biological applications through in vivo, as well as in vitro measurements of various types of tissue. We measured the permittivities of 0.9% saline and the muscle and fat of pork using the micromachined probe after liquid calibration. The measured permittivities of 0.9% saline and pork agreed well with both the expected values of the Cole-Cole equation along with the measured values obtained through the use of a 1-mm-diameter open-ended coaxial probe. We also performed in vivo measurements of breast cancer tissue implanted in an athymic nude mouse to show the suitability of the small-sized micromachined probe for practical biological applications. Through the obtained data, the capability of the micromachined probe of distinguishing different tissue types from one another was shown. The actual aperture size of the micromachined probe is only 240 /spl mu/m /spl times/ 70 /spl mu/m and, therefore, we can extract the biological information from very small biological tissues and drastically decrease the invasiveness of this method through the implementation of the small probe created through the use of MEMS technology.  相似文献   

9.
Electrical impedance measurements were performed on 13 atherosclerotic human aortic segments at 67 measuring spots in order to determine whether or not on the basis of these data a distinction can be made between atherosclerotic lesions and normal tissue. Stenosis localization and guidance of interventional techniques could be among the applications of an impedance measuring technique implemented on a catheter system. The experimental results, obtained with a two-electrode measuring technique, show that the apparent resistivity of an atherosclerotic spot does not necessarily deviate much from the resistivity of normal tissue. This is clarified by histology which shows that the majority of lesions has a surface layer of connective, fibrous tissue having almost similar conducting properties as the normal arterial wall. For gaining a deeper understanding of the way in which the measured data come about, a physical model of an atherosclerotic lesion is presented and confronted with the data. Both experimental data and theoretical considerations lead to the conclusion that only when the superficial fibrous layer is absent or very thin in relation to the size of the measuring electrode, the measured resistivity at a lesion is much higher than at normal spots. This occurs as a consequence of the high ohmic properties of the calcified or lipid deposits in the atherosclerotic lesion.  相似文献   

10.
本文详细地介绍了包括实验装置、测量程序和数据分析在内的扩展电阻技术.基于这种技术制成了自动两探针扩展电阻测试设备,在离子注入硅片表面得到的测量重复性介于1~3%,在单晶样品上电阻率的测量误差不大于15%.借助扩展电阻技术得到的掺杂分布能与C—V法结合阳极氧化剥层技术得到的分布相一致.基于单层突变结理论,使用计算机计算了修正因子.最后,详细阐述了扩展电阻技术的应用.  相似文献   

11.
The subject of this paper is the design and calibration of an open-ended coaxial probe for the nondestructive measurement of the dielectric properties of concrete. Measurements are made between 100-900 MHz, frequencies which are often used in geophysics and civil engineering for ground penetrating radar inspection. The probe is calibrated using measurements on saline solutions in conjunction with three different mathematical techniques for comparative study. Measurements of mortar and concrete specimens having different water/cement ratios were made in order to observe the standard deviations due to their heterogeneous nature. Similar to the case of relatively homogeneous rock specimens (limestone and granite), the standard deviation for heterogeneous concrete samples do not exceed 5%. In addition, the effect of the concrete's porosity on its dielectric properties was clearly observed: measured permittivity between 4-4.5 at 900 MHz for porous concrete, and between 6.5-7.5 at 900 MHz for dense concrete.  相似文献   

12.
直线导轨四自由度同时测量方法的研究   总被引:4,自引:3,他引:4  
匡萃方  冯其波  张斌  陈士谦 《中国激光》2005,32(9):266-1270
提出了一种基于半导体激光单模光纤组件同时测量直线导轨四自由度误差的新方法。以单一准直的激光束作为测量基准,用角锥棱镜和分光器分别作为直线度误差、角度误差测量的敏感器件,实现了水平和竖直方向直线度及俯仰角、偏摆角四个自由度误差的同时测量。分析了系统的测量原理,进行了稳定性、重复性以及与美国API 5D测量系统比对实验,理论分析和实验结果表明,系统测量直线度的分辨率小于0.1μm,角度的分辨率小于0.5″,在测量距离为2 m的条件下,直线度、角度测量精度分别为±1.0μm/m,±0.5″。测量方法具有结构简单、移动部分不带电缆和现场测量方便等优点。  相似文献   

13.
This paper describes a variety of interferometric techniques that may be used for measuring the angular location of a spacecraft with respect to natural celestial radio sources or another spacecraft. The differential propagation time-delay techniques largely cancel the common error sources and normally achieve low angular coordinate errors. Currently, the accuracy of the techniques are in the 1-2 nrad range for observations with a duration of one hour and 3-6deg of mean angular separation between the spacecraft and the reference sources at X-band frequencies. There are various possible ways to implement the differential angular measurements depending upon the determination of the phase cycle ambiguities associated with the differential propagation time delays of remote sources. There are methods that utilize a sufficiently large range of observing frequencies and others that rely upon the spatial arrangement of the receiving system and the rotation of the terrestrial platform. We summarize the methodologies and the advantages and disadvantages of the various techniques.  相似文献   

14.
The objective of this paper is to test the feasibility of using a multielectrode, intracavitary probe to solve a forward problem in which measured intracavitary potentials are compared to those calculated from subendocardial potentials and left ventricular (LV) cavity geometry. Intracavitary potentials and subendocardial potentials are measured simultaneously during electrical pacing stimuli from the LV apex, LV anterior base, LV posterior base, and right ventricular (RV) outflow tract of three exposed dog hearts. The LV cavity geometry is measured from postmortem magnetic resonance microscopy images of fixed hearts. Boundary integrals are approximated using a boundary element method and solved for intracavitary potentials. Correlation coefficients for LV apical pacing episodes are 0.989 +/- 0.002 while those for nonapical pacing episodes are 0.873 +/- 0.092. These results indicate that for electrical pacing from the apex, intracavitary stimulus potentials can be calculated with a high degree of accuracy. For nonapical pacing locations, the accuracy decreases since the calculations are more sensitive to errors in measuring probe position and LV cavity geometry near the septum. These results show that accurate geometric measurements of the intracavitary probe position and subendocardial surface are the primary concerns in solving future forward and inverse problems using an intracavitary probe.  相似文献   

15.
In this paper, we propose an algorithm that, using the extended Kalman filter, solves the inverse problem of estimating the conductivity/resistivity distribution in electrical impedance tomography (EIT). The algorithm estimates conductivity/resistivity in a wide range. The purpose of this investigation is to provide information for setting and controlling air volume and pressure delivered to patients under artificial ventilation. We show that, when the standard deviation of the measurement noise level raises up to 5% of the maximal measured voltage, the conductivity estimates converge to the expected vector within 7% accuracy of the maximal conductivity value, under numerical simulations, with spatial a priori information. A two-phase identification procedure is proposed. A cylindrical phantom with saline solution is used for experimental evaluation. An abrupt modification on the resistivity distribution of this solution is caused by the immersion of a glass object. Estimates of electrode contact impedances and images of the glass object are presented.  相似文献   

16.
Mapping of the myocardial scalar electric potential during defibrillation is normally performed with unipolar electrodes connected to voltage dividers and a global potential reference. Unfortunately, vector potential gradients that are calculated from these data tend to exhibit a high sensitivity to measurement errors. This paper presents a calibrated single-plunge bipolar electrode array (EA) that avoids the error sensitivity of unipolar electrodes. The EA is triaxial, uses a local potential reference, and simultaneously measures all three components of the myocardial electric field vector. An electrode spacing of approximately 500 microm allows the EA to be direct-coupled to high-input-impedance, isolated, differential amplifiers and eliminates the need for voltage dividers. Calibration is performed with an electrolytic tank in which an accurately measured, uniform electric field is produced. For each EA, unique calibration matrices are determined which transform potential difference readings from the EA to orthogonal components of the electric field vector. Elements of the matrices are evaluated by least squares multiple regression analysis of data recorded during rotation of the electric field. The design of the electrolytic tank and electrode holder allows the electric field vector to be rotated globally with respect to the electrode axes. The calibration technique corrects for both field perturbation by the plunge electrode body and deviations from orthogonality of the electrode axes. A unique feature of this technique is that it eliminates the need for mechanical measurement of the electrode spacing. During calibration, only angular settings and voltages are recorded. For this study, ten EAs were calibrated and their root-mean-square (rms) errors evaluated. The mean of the vector magnitude rms errors over the set of ten EAs was 0.40% and the standard deviation 0.07%. Calibrated EAs were also tested for multisite mapping in four dogs during high-voltage transthoracic shocks.  相似文献   

17.
A study on correlation between structure and resistivity variations was performed for live adult human skull. The resistivities of 388 skull samples, excised from 48 skull flaps of patients undergoing surgery, were measured at body temperature (36.5 degrees C) using the well-known four-electrode method in the frequency range of 1-4 MHz. According to different structures of the skull samples, all the 388 samples were classified into six categories and measured their resistivities: standard trilayer skull (7943 +/- 1752 ohm x cm, 58 samples), quasi-trilayer skull (14,471 +/- 3061 ohm x cm, 110 samples), standard compact skull (26,546 +/- 5374 ohm x cm, 62 samples), quasi-compact skull (19,824 +/- 3232 ohm x cm, 53 samples), dentate suture skull (5782 +/- 1778 ohm x cm, 41 samples), and squamous suture skull (12747 +/- 4120 ohm x cm, 64 samples). The results showed that the skull resistivities were not homogenous and were significantly influenced by local structural variations. The presence of sutures appeared to decrease the overall resistivity of particular regions largely and dentate suture decreased the resistivity more than squamous suture. The absence of diploe appeared to increase skull resistivity. The percentage on thickness of diploe would be the primary factor in determining the resistivity of the skull sample without suture. From resistivity spectra results, an inverse relationship between skull resistivity and signal frequency was found.  相似文献   

18.
李家琨  冯其波  包传辰  杨婧  赵斌陶 《红外与激光工程》2019,48(2):217001-0217001(6)
提出了一种基于光纤激光自准直转轴转角定位误差测量的方法,建立了包含转轴运动误差以及安装误差的误差模型,仿真分析了23项误差对转角定位误差测量的影响,结果表明仅有参考转轴与待测转轴之间的4项安装误差的影响量与转轴旋转角度相关,且只需精细调整其中两项角度安装误差即可保证影响量小于0.2。利用所搭建的测量装置对某分度盘的转角定位误差进行了测量,三次测量重复性偏差约为0.9,与光电自准直仪对比的最大偏差约为0.6。结果表明:利用该测量方法和测量装置可以实现转轴转角定位误差的全周范围高精度测量,验证了所提出模型的有效性。  相似文献   

19.
骆光烈 《现代雷达》2000,22(2):57-60
应用信号流图结合S参数分析了标网测量微波网络驻波和衰减的误差.推导出了N端口网络测量驻波和衰减时产生的最大测量误差公式.可供测试微波网络时作误差分析,也可供设计微波系统的人员在分配每个元件驻波和衰减参数时作参考.  相似文献   

20.
The aim of this simulation study is to determine the effect of uncertainty in intracavitary probe electrode position on the accuracy of estimated endocardial potentials. Intracavitary probe position uncertainty is simulated by randomly moving an idealized probe surface about the center of an idealized left ventricular endocardial surface. These random deviations represent possible probe locations that are incorporated as correlated noise. An optimum inverse transfer coefficient matrix, relating intracavitary potentials to endocardial potentials, is computed and subsequently used to calculate the best linear estimate of the true endocardial potentials. For uncorrelated endocardial potentials and probe position uncertainty within 1.5 mm of the coordinates of the exact probe electrode locations, a root-mean-square (rms) error of 34.0% is obtained. Increasing probe position uncertainties to 3.0 and 6.0 mm results in rms errors of 60.8 and 88.3%, respectively. For endocardial potentials that are 90% dipolar, the rms errors for probe position uncertainties of 1.5, 3.0, and 6.0 mm are 11.3, 19.6, and 28.5%, respectively. These simulation results imply that position uncertainty of a multielectrode, intracavitary probe can be a major source of error in estimating endocardial potentials from intracavitary potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号