首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD43, the most abundant membrane protein of T lymphocytes, is able to initiate signals that lead to Ca2+ mobilization and interleukin-2 production, yet the molecular events involved in signal transduction pathway of the CD43 molecule are only beginning to be understood. We have shown recently that cross-linking CD43 on the cell surface of human T lymphocytes with the anti-CD43 monoclonal antibody L10 leads to CD43-Fyn kinase interactions and to Fyn phosphorylation on tyrosine residues. This interaction seems to be mediated by the SH3 domain of Fyn and a proline-rich sequence located in the cytoplasmic domain of CD43. Here we show that CD43-specific activation of human T lymphocytes induced tyrosine phosphorylation of the adaptor protein Shc and of the guanine exchange factor Vav, as well as the formation of a macromolecular complex that comprises Shc, GRB2, and Vav. CD43 ligation resulted in enhanced formation of Vav.SLP-76 complexes and in the activation and nuclear translocation of ERK2. Cross-linking of the CD43 molecule in 3T3-CD43(+) cells induced luciferase activity from a construct under the control of the Fos serum responsive element. Altogether, these data suggest that the mitogen-activated protein kinase pathway is involved in CD43-dependent interleukin-2 gene expression.  相似文献   

2.
CD40 ligand (CD40L) expression on T cells is known to play a crucial role in B cell responses. Some evidence also supports a role for CD40L-CD40 interactions in T cell responses, at least in vivo. Whether the T cell requirement for these interactions is an invariable finding, however, is less clear. Here, we provide evidence that the Ag specificity of T cells influences the requirement for CD40L. T cell hybridomas with dual reactivity for two different Ags, allo-H2-Ap and Mls(a) superantigens, display a differential requirement for CD40L expression. Whereas the response to splenic APC expressing Mls(a) Ags requires CD40L expression, the response to alloantigen-bearing APC does not. The requirement for CD40L expression for the Mls(a) response appears to reflect a strong dependence of this response on ICAM-1 (intercellular adhesion molecule-1) and the ability of CD40-mediated signals to regulate ICAM-1 expression. These findings demonstrate that CD40L-CD40-mediated cross-talk is important for some but not all T cell responses and is influenced by both the type of Ag recognized and the type of APC.  相似文献   

3.
Recent in vitro studies have established that activated B cells express OX40 ligand (L), a member of the tumor necrosis factor/nerve growth factor family of cytokines, and become stimulated to proliferate and secrete immunoglobulin (Ig) after cross-linking of OX40L by its counterreceptor OX40, which is expressed on activated T cells. In the present study we investigated the in vivo role of this receptor-ligand pair for the interaction of T and B cells in the course of the T-dependent B cell response against 2,4,6 trinitro-phenyl-keyhole limpet hemocyanin. First, we showed that OX40 is maximally expressed by T cells in the periarteriolar lymphoid sheath (PALS) 3 d after primary immunization. These OX40+ cells are located in close proximity to antigen-specific, activated B cells. Second, we demonstrated that blocking of OX40-OX40L interaction with polyclonal anti-OX40 antibody or with antibodies against certain peptide sequences within its extracellular domain resulted in a profound decrease of the anti-hapten IgG response, whereas the antihapten IgM response was grossly unchanged. Third, we showed that this antibody treatment leads to an inhibition of the development of PALS-associated B cell foci, whereas the formation of germinal centers remained intact. Finally, our data suggest that, whereas B cell memory development was not impaired by anti-OX40 administration, OX40-OX40L interaction seems to be crucial in the secondary immune response. We conclude from these data that the OX40-OX40L interaction in vivo is necessary for the differentiation of activated B cells into highly Ig-producing cells, but is not involved in other pathways of antigen-driven B cell differentiation such as memory cell development in the germinal centers.  相似文献   

4.
The role of CD40 in the development of germinal centers (GC) is not simply to initiate the B cell response, as rudimentary GC can develop in CD40-/- mice that are injected with CD40-immunoglobulin (Ig) fusion protein. This indicates that CD40 ligand (CD40L) transduces a signal to T cells that is important in the process. In this study we have used an in vitro model of GC development to investigate the role of CD40L, cytokines and other co-stimuli. The model involves the specific induction of an H-2E transgene in GC B cells (in Sma58 mice). We find that Th2 cytokines together with Ig and CD40 cross-linking are the most efficient means of induction of the GC phenotype. Although IL-4 plays some inductive role, it is not the sole active ingredient in the mix of cytokines made by Th2 cells. Our studies on primary T cells and T cell clones activated in the absence of CD40 on antigen-presenting cells or CD40L on T cells indicate that the CD40L co-stimulus does not directly bias the response to Th2 cells, as previously reported, but that it augments terminal effector T cell differentiation or the level of secretory activity. However, both in vitro and in vivo, the CD40L co-stimulus is crucially important for Th2 development as in its absence IL-4 production is suboptimal and does not compete with a larger, more rapid IFN-gamma response.  相似文献   

5.
The intracellular signaling pathways activated upon ligation of the co-stimulatory receptor CD28 remain relatively ill-defined, although CD28 ligation does result in the strong association with, and activation of, phosphatidylinositol (PI) 3-kinase. The downstream effector targets of the CD28-activated PI 3-kinase-dependent signaling pathway remain poorly defined, but recent evidence from other systems has shown that Akt/protein kinase B (PKB) is a major target of PI 3-kinase and have indicated that a major function of PKB is the regulation of cell survival events. Given the strong coupling of CD28 to PI 3-kinase and the known protective effects of both CD28 and PI 3-kinase against apoptosis in different cell models, we investigated the effects of CD28 on PKB activation. We demonstrate that ligation of CD28 by either anti-CD28 monoclonal antibodies or the natural ligand B7.1, results in the marked activation of PKB in both the leukemic T cell line Jurkat and freshly isolated human peripheral blood-derived normal T lymphocytes. Our data suggest therefore, that PKB may be an important intracellular signal involved in CD28 signal transduction and demonstrate CD28 coupling to downstream elements of a signaling cascade known to promote cell survival.  相似文献   

6.
Small cell lung cancer (SCLC) cell growth is sustained by multiple autocrine and paracrine growth loops involving neuropeptides. The bombesin family of peptides are autocrine growth factors in H345 SCLC cells and provide a paradigm for the study of growth factors and mitogenic signaling in SCLC cells. We show that bombesin (and other neuropeptides) stimulates protein tyrosine phosphorylation (particularly focal adhesion kinase) and protein tyrosine kinase (PTK) activity in intact SCLC cells. Furthermore, the broad spectrum neuropeptide receptor antagonist [D-Arg, D = Phe, D-Trp, Leu11]substance P inhibits all neuropeptide-mediated signals (including PTK activation), SCLC cell growth in vivo and in vitro, and also increases the natural rate of apoptosis seen in growing SCLC cell lines. Hence the effect of selective PTK inhibition on SCLC cell growth and apoptosis was examined. We show that selective inhibition of PTK activity, with genistein and (3,4,5-tri-hydroxyphenyl)-methylene(-propanedinitrile) tyrphostin-25 inhibits basal and neuropeptide-stimulated SCLC cell growth. Genistein and tyrphostin-25 also stimulate apoptosis in SCLC cells. Inhibition of proliferation in these cells is intimately linke to apoptosis, because these changes occurred without any effect on SCLC cell cycle kinetics, suggesting that apoptosis occurs independently of the cell cycle and that failure to progress through the cell cycle results in apoptosis. Because tyrphostin-25 fails to influence p53 or Bcl-2 expression in these cells, this mode of programmed cell death appears to be via a p53- and Bcl-2-independent mechanism. These results provide evidence that tyrosine phosphorylation is a mitogenic signal in SCLC cells and suggest that regulation of the level of protein tyrosine phosphorylation represents a critical determinant of whether SCLC cells survive and proliferate or die by apoptosis. Thus PTK inhibition may provide a novel therapeutic option in SCLC that has become resistant to conventional chemotherapeutic agents.  相似文献   

7.
Patients with X-linked hyper-IgM syndrome [CD40 ligand (CD40L) deficiency] are prone to infections by intracellular parasites. It has been suggested that this susceptibility is caused by defective macrophage activation through the CD40L-CD40 pathway. We studied the CD40-mediated activation of monocytes and dendritic cells from patients affected with a CD40L+ hyper-IgM syndrome characterized by a defect of B lymphocyte responses to CD40 agonists. We show that the CD40-induced production of IL-6, IL-8 and TNF-alpha by monocytes, and IL-12 by dendritic cells, and expression of the activation markers CD83, the costimulatory molecules CD86 and CD80, and HLA-DR antigens were all similar in patient and control cells. This observation is consistent with the clinical characteristics of the syndrome: a defect of immunoglobulin switch but no susceptibility to opportunistic infections, as observed in CD40L-deficient patients. These observations suggest that CD40-mediated activation pathways could be, at least in part, different in B and monocytic/dendritic cell lineages.  相似文献   

8.
In order to address a role of protein kinase C in signal transduction through interleukin-2, interleukin-4, and interleukin-9 receptors, we took advantage of the availability of a selective protein kinase C inhibitor, GF109203X, and the availability of TS1 beta and TS1 alpha beta cell lines which can be maintained in interleukin-2, interleukin-4, or interleukin-9 independently. In this report we report that inhibition of protein kinase C activity by GF109203X does not block interleukin-4- or interleukin-9-dependent proliferation and, on the contrary, does block interleukin-2-dependent proliferation, suggesting that interleukin-4 and interleukin-9 do not use signal transduction pathways mediated by protein kinase C and that the common gamma chain of interleukin-2, interleukin-4, and interleukin-9 receptors is not responsible per se for the activation of protein kinase C through interleukin-2 receptor. Moreover, GF109203X induces apoptosis in cells cultured in interleukin-2 but not in interleukin-4 or interleukin-9. Using antisense oligonucleotides, we report that the zeta and epsilon protein kinase C isoforms are involved in signaling through high-affinity interleukin-2 receptor and beta and zeta are involved in signaling through intermediate-affinity interleukin-2 receptor. Taken together, our data indicate that activation of the zeta, beta, and epsilon protein kinase C isoforms is an important step in interleukin-2-mediated proliferation.  相似文献   

9.
The interaction of CD40 on B cells with the CD40 ligand (CD40L) on preactivated CD4 T cells is critical for the initiation of T-dependent Ab responses. It is believed that signals via CD40 synergize with cytokines (e.g., IL-4 and IL-5) to drive B cell activation. However, primary T cells preactivated via CD3 alone cannot induce B cell proliferation; we have shown previously that costimulation of T cells via CD3 and CD28 stabilizes the expression of the CD40L, which we propose contributes to their capacity to act as competent helper-effector cells. Here we show that an additional, critical reason why CD3-stimulated CD40L-bearing T cells are incompetent helper cells is because they secrete insufficient IL-2. In contrast, CD28/CD3-activated T cells induce B cells to become IL-2 responsive via a combination of CD40L and IL-2-mediated signals, and these two stimuli subsequently drive B cell proliferation and IgM secretion. We therefore propose that T cells must first encounter Ag in conjunction with CD80/86 on APCs. This leads to the stable expression of CD40L and maximal secretion of IL-2, which together render primary T cells competent to activate B cells in an IL-2-dependent fashion.  相似文献   

10.
Mesangial cell proliferation and extracellular matrix accumulation are fundamental in the pathogenesis of glomerulosclerosis. Platelet-derived growth factor (PDGF) is a major cytokine involved in mesangial cell proliferation, and its increased expression is seen in glomerular injury. Atherogenic lipoproteins stimulate mesangial cell proliferation and induce glomerular injury in experimental animals. We examined the effect of low-density lipoprotein (LDL) and its more atherogenic oxidized forms, minimally modified LDL (mm-LDL) and oxidized LDL (ox-LDL) on mesangial cell PDGF mRNA expression. Incubation with 2.5 to 25 microg/ml LDL or mm-LDL for 1 to 4 hours stimulated mesangial cell PDGF mRNA expression (mm-LDL 2 to 3 times greater than LDL); ox-LDL had no effect. Similarly, both LDL and mm-LDL induced mesangial cell DNA synthesis (mm-LDL 1.5 to 2 times greater). In further studies evaluating key associated intracellular signal transduction mechanisms, the protein tyrosine kinase (PTK) inhibitors herbimycin and genistein markedly decreased basal and lipoprotein-induced PDGF mRNA expression. Both pertussis toxin and isoproterenol, cyclic AMP-generating substances, stimulated PDGF mRNA expression. Preincubation with H-8 or H-89, cyclic AMP-dependent protein kinase A (PKA) inhibitors, blocked the lipoprotein-induced PDGF message, whereas preincubation with calphostin C, a protein kinase C inhibitor, did not alter LDL- or mm-LDL-mediated PDGF mRNA expression. These data suggest that the accumulation of atherogenic lipoproteins and their endogenous oxidized forms within the glomerulus may regulate mesangial cell PDGF expression and related cellular responses. These events appear to be modulated by signal transduction pathways involving PTK and PKA.  相似文献   

11.
12.
p38 mitogen-activated protein kinase (MAPK) (p38) is involved in various cellular responses, including LPS stimulation of monocytes, resulting in production of proinflammatory cytokines such as TNF-alpha. However, the function of p38 during antigenic stimulation of T cells is largely unknown. Stimulation of the human Th cell clone HA-1.70 with either the superantigen staphylococcal enterotoxin B (SEB) or with a specific antigenic peptide resulted in p38 activation and the release of TNF-alpha. MAPK-activated protein kinase-2 (MAPKAPK-2), an in vivo substrate for p38, was also activated by T cell signaling. SB 203580, a selective inhibitor of p38, blocked p38 and MAPKAPK-2 activation in the T cell clone but did not completely inhibit TNF-alpha release. PD 098059, a selective inhibitor of MAPK kinase 1 (MEK1), blocked activation of extracellular signal-regulated kinase (ERK) and partially blocked TNF-alpha production by the clone. In human peripheral T cells, p38 was not activated by SEB, but rather by CD28 cross-linking, whereas in the human leukemic T cell line Jurkat, p38 was activated by CD3 and CD28 cross-linking in an additive fashion. TNF-alpha production by peripheral T cells in response to SEB and anti-CD28 mAb correlated more closely with ERK activity than with p38 activity. Therefore, various forms of T cell stimulation can activate the p38 pathway depending on the cells examined. Furthermore, unlike LPS-stimulated monocytes, TNF-alpha production by T cells is only partially p38-dependent.  相似文献   

13.
Adeno-associated virus type 2 (AAV), a single-stranded, DNA-containing, nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. However, the transduction efficiency of AAV vectors varies greatly in different cells and tissues in vitro and in vivo. We have recently documented that a cellular tyrosine phosphoprotein, designated the single-stranded D-sequence-binding protein (ssD-BP), plays an important role in AAV-mediated transgene expression (K. Y. Qing et al., Proc. Natl. Acad. Sci. USA 94:10879-10884, 1997) and that a strong correlation exists between the phosphorylation state of the ssD-BP and AAV transduction efficiency in vitro as well as in vivo (K. Y. Qing et al., J. Virol. 72:1593-1599, 1998). In this report, we document that treatment of cells with specific inhibitors of the epidermal growth factor receptor protein tyrosine kinase (EGF-R PTK) activity, such as tyrphostin, leads to significant augmentation of AAV transduction efficiency, and phosphorylation of the ssD-BP is mediated by the EGF-R PTK. Treatment of cells with EGF results in phosphorylation of the ssD-BP, whereas treatment with tyrphostin causes dephosphorylation of the ssD-BP and consequently leads to increased expression of the transgene. Furthermore, AAV transduction efficiency inversely correlates with expression of the EGF-R in different cell types, and stable transfection of the EGF-R cDNA causes phosphorylation of the ssD-BP, leading to significant inhibition in AAV-mediated transgene expression which can be overcome by the tyrphostin treatment. These data suggest that the PTK activity of the EGF-R is a crucial determinant in the life cycle of AAV and that further studies on the interaction between the EGF-R and the ssD-BP may yield new insights not only into its role in the host cell but also in the successful use of AAV vectors in human gene therapy.  相似文献   

14.
Activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway is required for ligand-dependent regulation of numerous cellular functions by receptor tyrosine kinases. We have shown previously that although many receptor tyrosine kinase ligands are mitogens for keratinocytes, cell migration and induction of the 92-kilodalton gelatinase/matrix metalloproteinase (MMP)-9 are selectively regulated by the epidermal growth factor and scatter factor/hepatocyte growth factor receptors. In this report we present evidence of an underlying mechanism to account for these observed differences in receptor tyrosine kinase-mediated response. Ligands that are mitogenic, but do not induce MMP-9 or colony dispersion, transiently activate the p42/p44 ERK/MAP kinases. In contrast, ligands that stimulate MMP-9 induction and colony dispersion induced sustained activation of these kinases. The functional significance of sustained MAPK activation was demonstrated by inhibition of the MAP kinase kinase MEK1. Disruption of the prolonged signal by addition of the MEK1 inhibitor PD 98059 up to 4 h after growth factor stimulation substantially impaired ligand-dependent colony dispersion and MMP-9 induction. These findings support the conclusion that duration of MAPK activation is an important determinant for certain growth factor-mediated functions in keratinocytes.  相似文献   

15.
Anti-CD3 monoclonal antibodies (MoAbs) and glucocorticoid hormones induce apoptosis in immature thymocytes and peripheral T lymphocytes. This process is inhibited by a number of growth factors, including interleukin-2 (IL-2), IL-3, and IL-4, as well as by triggering of the adhesion molecule CD44, which would indicate that signals generated by membrane receptors can modulate the survival of lymphoid cells. To investigate whether triggering of CD2 may also affect apoptosis in lymphoid cells, we analyzed the effect of stimulation with anti-CD2 MoAbs on T-cell apoptosis induced by two stimuli, anti-CD3 MoAbs and dexamethasone (DEX), using a hybridoma T-cell line and a T-helper cell clone. The results show that CD2 engagement decreased anti-CD3 MoAb-induced apoptosis, but did not influence DEX-induced cell death. Furthermore, the decrease appeared to be related to the expression of Fas/APO-1 (CD95) and Fas-ligand (Fas-L). In fact, we show that CD2 stimulation inhibits apoptosis by preventing the CD3-induced upregulation of Fas and Fas-L in a Fas-dependent experimental system. These data suggest that a costimulatory molecule may control a deletion pathway and may therefore contribute to the regulation of peripheral tolerance.  相似文献   

16.
Eph-related receptor tyrosine kinases (RTKs) have been implicated in intercellular communication during embryonic development. To elucidate their signal transduction pathways, we applied the yeast two-hybrid system. We could demonstrate that the carboxyl termini of the Eph-related RTKs EphA7, EphB2, EphB3, EphB5, and EphB6 interact with the PDZ domain of the ras-binding protein AF6. A mutational analysis revealed that six C-terminal residues of the receptors are involved in binding to the PDZ domain of AF6 in a sequence-specific fashion. Moreover, this PDZ domain also interacts with C-terminal sequences derived from other transmembrane receptors such as neurexins and the Notch ligand Jagged. In contrast to the association of EphB3 to the PDZ domain of AF6, the interaction with full-length AF6 clearly depends on the kinase activity of EphB3, suggesting a regulated mechanism for the PDZ-domain-mediated interaction. These data gave rise to the idea that the binding of AF6 to EphB3 occurs in a cooperative fashion because of synergistic effects involving different epitopes of both proteins. Moreover, in NIH 3T3 and NG108 cells endogenous AF6 is phosphorylated specifically by EphB3 and EphB2 in a ligand-dependent fashion. Our observations add the PDZ domain to the group of conserved protein modules such as Src-homology-2 (SH2) and phosphotyrosine-binding (PTB) domains that regulate signal transduction through their ability to mediate the interaction with RTKs.  相似文献   

17.
In rheumatoid synovitis, lymphocytes can be arranged in follicular structures resembling secondary lymphoid follicles. To understand the organizing principles of this ectopic lymphoid tissue, the cellular components contributing to synovial follicles were examined. In 9 of 24 synovial tissue biopsies, lymphoid aggregates were found consisting of CD4+ T cells and CD20+ B cells. In four of the nine patients, the follicular centers were occupied by CD23+ CD21+ cellular networks representing follicular dendritic cells involved in germinal center reactions. In five patients, CD23+ cells were absent from the centers of the aggregates, suggesting that fully developed germinal centers are generated in only a subset of patients. To identify factors involved in the regulation of the synovial microarchitecture, cell populations contributing to the follicles were quantified by digital image analysis of immunostained tissue and by flow cytometry of tissue-derived lymphocytes. Proportions of CD4+, CD20+, and CD68+ cell subsets were surprisingly invariant, irrespective of the presence or absence of CD23+ follicular dendritic cells. Instead, tissue biopsies with CD23+ germinal center-like regions could be distinguished from those with CD23- T cell-B cell aggregates by a fourfold increase in the frequency of tissue-infiltrating CD8+ T cells, a fraction of which expressed CD40 ligand (CD40L). The data suggest a previously unsuspected role of CD8+ lymphocytes in modulating germinal center formation and raise the possibility that CD8+ CD40L+ T cells are involved in aggravating pathologic immune responses in rheumatoid synovitis.  相似文献   

18.
The treatment of infectious diseases caused by intracellular bacteria, such as Q fever, may benefit from cytokines acting on macrophages. Monocytic THP-1 cells were infected with Coxiella burnetii, the etiological agent of Q fever, and then treated with IFN-gamma. While C. burnetii multiplied in untreated monocytes, IFN-gamma reduced bacterial viability after 24 h of treatment and reached maximum inhibition after 96 h. IFN-gamma also affected the viability of infected cells. Cell death resulted from apoptosis; occurring 24 h after the addition of IFN-gamma, it reached a maximum after 48 h and was followed by necrosis. Reactive oxygen intermediates were not required for C. burnetii killing, since monocytes from patients with chronic granulomatous disease were microbicidal in response to IFN-gamma. The role of cytokines was also investigated. IFN-gamma elicited a moderate release of IL-1beta in infected monocytes. Moreover, the IL-1 receptor antagonist did not affect C. burnetii survival, suggesting that IL-1beta was not involved in the bacterial killing induced by IFN-gamma. TNF was involved in IFN-gamma-induced killing of C. burnetii and cell death. IFN-gamma induced mRNA expression and sustained secretion of TNF. Neutralizing Abs to TNF as well as Abs directed against TNF receptors I and II, significantly prevented IFN-gamma-dependent killing of C. burnetii and cell death. These results suggest that IFN-gamma promotes the killing of C. burnetii in monocytes through an apoptotic mechanism mediated in part by TNF.  相似文献   

19.
Costimulation of both the CD3 and CD28 receptors is essential for T cell activation. Induction of adenosine 3',5'-monophosphate (cAMP)-specific phosphodiesterase-7 (PDE7) was found to be a consequence of such costimulation. Increased PDE7 in T cells correlated with decreased cAMP, increased interleukin-2 expression, and increased proliferation. Selectively reducing PDE7 expression with a PDE7 antisense oligonucleotide inhibited T cell proliferation; inhibition was reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase (PKA). Thus, PDE7 induction and consequent suppression of PKA activity is required for T cell activation, and inhibition of PDE7 could be an approach to treating T cell-dependent disorders.  相似文献   

20.
The interaction between CD28 and its ligands, CD80 and CD86, is crucial for an optimal activation of antigen-specific T cells. However, the requirement of CD80 or CD86 co-stimulation in Th2 cell differentiation and activation is controversial. Freshly isolated murine CD4+ and CD8+ T cells were incubated with P815 transfectants expressing a similar level of either CD80 or CD86 in the presence of anti-CD3 mAb. Both CD80 and CD86 co-stimulated the proliferation of CD4+ and CD8+ T cells at comparable time-kinetics and magnitude, but CD86 alone was able to co-stimulate IL-4 and especially IL-10 production in CD4+ T cells. In typical Th2-dependent immune responses elicited by Nippostrongylus brasillensis infection, the anti-CD86 mAb treatment but not the anti-CD80 mAb treatment efficiently inhibited antigen-specific IgE and IgG1 production, which was accompanied with the reduced IL-4 production. Our results suggest that CD86 co-stimulation plays a dominant role not only in the primary activation of Th2 cells but also in the secondary interaction between antigen-primed Th2 cells and B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号