首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
为探索高纺速下Lyocell纤维凝聚态结构与原纤化的关系,在不同条件下进行高速纺丝,从结构出发调控Lyocell纤维原纤化。借助X射线衍射仪、湿摩擦测试仪及偏光显微镜等,探究了凝固浴N-甲基吗啉-N-氧化物(NMMO)质量分数、纺丝速度及吹风风速对Lyocell纤维凝聚态结构和原纤化的影响。结果表明:一定程度提高凝固浴NMMO质量分数可使Lyocell纤维凝聚态结构更完善,提高纺丝速度可促进Lyocell纤维无定形区取向,提高吹风风速会促进其横向晶粒尺寸增长;凝聚态结构直接影响Lyocell纤维原纤化程度,结晶取向度低、晶粒尺寸小的Lyocell纤维抗原纤化更好,因此,在一定范围内降低凝固浴NMMO质量分数、纺速、吹风风速均可降低纤维原纤化程度;其中,调整凝固浴NMMO质量分数可同时改变全取向度(尤其是非晶取向)和横向晶粒尺寸,更易于高纺速下调控Lyocell纤维原纤化性能。  相似文献   

2.
由NMMO法生产的Lyocell纤维,工艺流程短、对环境无污染、性能优异.本文主要探索对Lyocell针织物的交联整理来控制其原纤化,并研究了交联对染色性能的影响.  相似文献   

3.
利用蚕丝易原纤化的性质,正在研究各种蚕丝非织造布的制造方法。例如,有在切断的蚕丝、以及切断后经搅打使其原纤化而得到的蚕丝结合件中,添加湿强度增强剂,用湿式抄纸法制造蚕丝非织造布的方法、和通过用碱剂凋整pH的中性盐水溶液,对蚕丝纤维进行膨化处理后,对其施加能赋予一定振动和剪切应  相似文献   

4.
水刺工艺对竹浆纤维原纤化性能的影响   总被引:1,自引:0,他引:1  
朱远胜 《纺织学报》2010,31(2):24-26
为了解水刺加工过程中加工工艺对竹浆纤维原纤化性能的影响,实验采用3种不同线密度的竹浆纤维,在水压、水刺头数量、水刺距离、生产速度等工艺改变的情况下,通过测定竹浆纤维产品的原纤化指数,研究加工工艺和竹浆纤维原纤化的关系。实验结果表明:随着纤维线密度的增加,纤维的原纤化程度增加;在线密度相同的条件下,随着水刺压力的增加,纤维原纤化呈上升趋势;随着水刺距离和生产速度的增加,产品的原纤化呈下降趋势;水刺头的数量对竹纤维的原纤化影响不是很明显。  相似文献   

5.
讨论了由纤维素和聚丙烯腈所组成的溶液在离子液体中形成纤维的过程。除了制备聚合物溶液外,还描述了由干湿法制备纤维素聚丙烯腈纤维的成形以及其纺织物理特性、保水性、原纤化趋势和染色性能。根据此工艺能获得一种既具特性又具可变性能的纤维,这些性能取决于所用聚合物的种类、溶剂以及之间的比例。  相似文献   

6.
lyocell是纤维素溶解在N-甲基吗啉-N-氧化物中,用环境友好工艺生产的纤维素纤维的通用名称.lyocell纤维具有超越其他纤维素纤维的一些关键特征,诸如干、湿强度高、湿模量高等.lyocell也有一些与潮湿条件下原纤化有关的缺点.在lyocell中,球粒生成主要由原纤化引起.绒毛主要由干燥条件下机械摩擦产生,而原纤化由潮湿条件下的机械摩擦引起.讨论了lyocell原纤化的起因和去原纤化的方法.  相似文献   

7.
纤维素新溶剂的溶解特性比较   总被引:1,自引:0,他引:1  
详细介绍了纤维素N-甲基吗啉-N-氧化物(NMMO)、氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)、离子型液体新溶剂体系,并对上述不同溶剂体系的性质、溶解特性和溶解方法做了深入的时比与分析.  相似文献   

8.
高原纤化Lyocell纤维的制造   总被引:2,自引:0,他引:2  
介绍了纤维原纤化的含义、表征、产生原因、影响因素及高原纤化Lyocell纤维的制造方法.  相似文献   

9.
文摘天地     
《丝绸》2003,(7)
031568蚕蛹中提取蛋白质的工艺研究/祝永强等/中国蚕业,2003,No.2,18~19蚕蛹蛋白质是一种优质的天然氮源。试验采用L9(34)表正交设计法,以蛋白质得率作为指标,对蚕蛹提取蛋白质的工艺条件进行了研究,最后优选出蚕蛹中提取蛋白质的工艺。031569Tencel纤维原纤化产生机理的探讨/张建春等/上海纺织科技,2003,No.1,14~15依据广泛的测试、实验和分析所建立的超分子结构模型,对Tencel纤维的原纤化产生机理进行了较深入的探讨,分析其产生条件并介绍控制和促进Tencel纤维原纤化的基本思路。031570异形EDDP纺丝工艺研究/朱学会,刘俊卿/济南纺织…  相似文献   

10.
刘昭雪  文明 《印染》2006,32(12):15-17
讨论了Polynosic/ECDP(低温阳离子可染涤纶)混纺织物的染整工艺和注意要点;分析了主要影响因素如酶退浆、染料的选择和低原纤化倾向等;并给出了合理的工艺条件,即采用复合酶与双氧水一浴法前处理;采用双活性基染料和纤维索酶处理,以消除纤维低原纤化。  相似文献   

11.
为提高N-甲基吗啉-N-氧化物(NMMO)对苎麻纤维的处理效果,利用正交试验方法优化了其处理工艺,通过测试处理后纤维性能得出:温度为65 ℃、NMMO 质量分数为 30%、处理时间为 20 min 时苎麻纤维的综合性能达到最佳;处理后纤维中既无 NMMO 分子残留,也没有生成新的纤维素;最佳工艺条件下,苎麻纤维的断裂强度和结晶度分别下降了23.84%和21.08%,线密度、断裂伸长率和断裂回转数分别增加了11.05%、41.36%和57.53%,苎麻纤维的综合性能较未处理时有较大提升。  相似文献   

12.
超细纤维是指线密度〈0.3 dtex的纤维。制备超细纤维最主要的工艺是双组分纺丝工艺:第一步工艺是将成纤聚合物与基体聚合物共同挤出;第二步是将基体聚合物溶解,制得嵌入其中的超细纤维。用这种方法制备的纤维形状、横截面、长度及取向不是均一的。基于纤维素和醋酯纤维的超细纤维不能通过双组分纺丝工艺制备,因此也无法得到这种超细纤维。现在,一种采用新型的喷丝板结合离子液体纺丝工艺可以制备这种纤维素超细纤维。下面详细描述这种新型纤维的制备工艺和性能。  相似文献   

13.
介绍了离子液体的发展、分类、性质、合成方法及其应用,对离子液体在印染助剂和纺织品加工领域的应用进行了展望.  相似文献   

14.
In the recent years, the use of textile structures made from high performance fibers is finding increasing importance in composites applications. In textile process, there is direct control over fiber placements and ease of handling of fibers. Besides economical advantages, textile technologies also provide homogenous distribution of matrix and reinforcing fiber. Thus textile performs are considered to be the structural backbone of composite structures. Textile technology is of particular importance in the context of improving certain properties of composites like inter-laminar shear and damage tolerance apart from reducing the cost of manufacturing. Textile industry has the necessary technology to weave high performance multifilament fibers such as glass, aramid and carbon, which have high tensile strength, modulus, and resistance to chemicals and heat into various types of preforms. Depending upon textile preforming method the range of fiber orientation and fiber volume fraction of preform will vary, subsequently affecting matrix infiltration and consolidation. As a route to mass production of textile composites, the production speed, material handling, and material design flexibility are major factors responsible for selection of textile reinforcement production. This opens a new field of technical applications with a new type of semifinished material produced by textile industry. Various types of hybrid yarns for thermoplastic composites and textile preforming methods have been discussed in detail in this issue. Information on manufacturing methods, structural details and properties of different hybrid yarns are presented and critically analyzed. Characterization methods used for these hybrid yarns have been discussed along with the influence of different processing parameters on the properties being characterized. The developments in all areas of textile preforming including weaving, knitting, braiding, stitching and nonwovens techniques are presented and discussed along with the characterization techniques for these preforms. The techniques used for manufacturing composites using hybrid yarns and textile preforms are discussed along with the details on compaction behavior of these structures during consolidation process. The structure of hybrid yarns and the textile preforms have direct influence on the properties of the composite made from them. The reported literature in this aspect is discussed in detail. In the end, the potential application areas and their trends for thermoplastic composites are discussed and analyzed.  相似文献   

15.
为了探索高值化纤维素纤维的发展,综述了离子液体新介质在高值化纤维素纤维中的应用,详细介绍了离子液体溶剂体系、纺丝过程与技术的进展,指出离子液体新介质应用于纤维素纤维理论研究已比较完善,形成一定的技术积累,处在工程化的前期。列举了多种离子液体为溶剂的高值化纤维素纤维产品,提出高值化纤维素复合纤维与纤维素衍生物纤维是离子液体在纤维素纤维产品开发领域的发展方向。  相似文献   

16.
纳米纤维的应用前景   总被引:1,自引:0,他引:1  
钟智丽  王训该 《纺织学报》2006,27(1):107-110
论述了纳米纤维制备新方法和典型纳米纤维的应用前景。指出静电纺丝技术可制得聚合物纳米纺织纤维长丝、实心纳米碳纤维、生物降解性聚合物纳米纤维和聚苯胺及其与常规聚合物共混的纳米导电纤维,其直径取决于纺丝工艺参数;静电纺丝是得到纳米纤维最重要的方法,也是最有可能实现纳米纤维工业化生产的技术。  相似文献   

17.
The use of nanomaterials- and nanotechnology-based processes is growing at a tremendous rate in all fields of science and technology. Textile industry is also experiencing the benefits of nanotechnology in its diverse field of applications. Textile-based nanoproducts starting from nanocomposite fibers, nanofibers to intelligent high-performance polymeric nanocoatings are getting their way not only in high performance advanced applications but nanoparticles are also successfully being used in conventional textiles to impart new functionality and improved performance. Greater repeatability, reliability and robustness are the main advantages of nanotechnological advancements in textiles. Nanoparticle application during conventional textile processing techniques, such as finishing, coating and dyeing, enhances the product performance manifold and imparts hitherto unachieved functionality. New coating techniques like sol-gel, layer-by-layer, plasma polymerization etc. can develop multi-functionality, intelligence, excellent durability and weather resistance to fabrics. The present paper focuses on the development and potential applications of nanotechnology in developing multifunctional and smart nanocomposite fibers, nanofibers and other new finished and nanocoated textiles. The four main areas of textile chemical processing, namely nanofinishing, nanocoating, nanocomposite coating and nanodyeing, are covered in the first section of this paper and the second section deals with developments in nanocomposite fibers and nanofibers. The influence of nanomaterials in textile finishing and processing to enhance product performance is discussed. Nanocoating is a relatively new technique in the textile field and is currently under research and development. Polymeric nanocomposite coatings, where nanoparticles are dispersed in polymeric media and used for coating applications, are the most promising route to develop multifunctional and intelligent high-performance textiles. Not much research has been done on applying the concept of nanotechnology in dyeing of textiles except a few reports on dye particle size reduction, structural change in fibers or the surface etching of textiles to create nanostructured surfaces. The reduction in water consumption during nanotechnology applications in textile processing has the potential to control the effluent problems of a textile process house. The most researched area to produce multifunctional, smart fibers is the preparation of nanocomposite fibers where the exceptional properties of nanoparticles have been utilized to enhance and impart several functionalities on conventional textile grade fibers. Nanofibers are gaining popularity in some specialized technical applications such as filter fabric, antibacterial patches and chemical protective suits. Nanotechnological advances in these two areas of nanocomposite fibers and nanofibrous forms have also been reviewed.  相似文献   

18.
为了克服聚酯纤维的弱点,世界上许多大公司都致力于改性聚酯纤维的研究开发。新的聚酯纤维层出不穷,这些新材料在纺织生产中应用,能赋予纺织产品新的性能和风格,提高纺织产品的档次;能突出纺织产品的个性化、环保化和功能化的特点。文章介绍了济南正昊化纤新材料有限公司研制开发的多种新型聚酯纤维的性能、规格及其应用领域。  相似文献   

19.
In a previous publication we reviewed some of the most critical issues that affect the coloration and properties of cotton-based textiles [R. Shamey and T. Hussain, Textile Progress 37(1/2) (2005) pp. 1–84]. Today, polyester is still widely regarded as an inexpensive and uncomfortable fiber, but this image is slowly beginning to fade with the emergence of polyester luxury fibers. Polyester fibers currently comprise a commanding 77% share of the total worldwide production of the major synthetic fibers [F. Ayfi, 2003–2004 Handbook of Statistics on Man-Made/Synthetic Fibre/Yarn Industry. Part One, Fibre for Better Living, Association of Synthetic Fibre Industry, Mumbai, India, 2004, p. 177]. More than 95% of all polyester fibers manufactured today is based on polyethylene terephthalate. The dyeing properties of polyester fibers are strongly influenced by many of the processing conditions to which each fiber may be subjected during its manufacturing or in subsequent handling. Significant differences in properties of fibers can therefore arise due to their different processing history. Often, the root cause(s) of a problem in the dyed synthetic material can be traced as far back as the manufacturing process. In order to resolve many of the outstanding issues that commonly occur in the dyeing of this important fiber, a comprehensive review of the issues dealing with the manufacturing history as well as fiber processing conditions, including preparation, dyeing, and finishing is warranted. Although some of the underlying problems are related to common causes such as water quality and imperfections in machinery employed, others are specific to the treatment conditions of the fiber. Such conditions include preparation of ingredients, polymerization, fiber and filament processing conditions, as well as heat setting that can cause problems in the coloration of fiber. This summary analysis complements the rich pool of knowledge in this domain and addresses problems in the dyeing of polyester textile materials in various forms. An overview of various textile operations for polyester is given in the beginning. Then, various key steps and critical factors involved in the production of dyed polyester textile materials are described in detail and problems originating at each stage are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号