首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
综述了锂离子氧化物、硫化物玻璃及微晶玻璃固体电解质的研究进展.重点讨论了这些材料的电化学性能,以及离子掺杂对电化学性能的影响.探讨了锂离子玻璃和微晶玻璃固体电解质的发展及应用前景,认为其在全固态电池中的应用将随技术的发展实现商业化.  相似文献   

2.
硫系锂离子导电玻璃及微晶玻璃具有离子电导率高、成形简单、组成和性能在一定范围内连续可调、不可燃等特点,被视为实现全固态锂离子电池的理想电解质材料。综述了硫系锂离子导电玻璃及微晶玻璃的制备工艺、结构、导电性能以及在锂离子电池中的应用,最后指出了其发展趋势。  相似文献   

3.
目前,采用固体电解质代替传统电解液发展新型全固态锂离子电池,已成为解决电池安全问题、提高电池储能密度的一项重要的技术方法。固体电解质材料作为全固态锂电池的核心,它的性能很大程度上决定了电池的各项性能指标。迄今被研究过的无机固体电解质材料有很多,包括NASICON型、LISICON型、钙钛矿型和石榴石型等晶态固体电解质,和氧化物及硫化物等玻璃态固体电解质,其中石榴石型结构的Li_7La_3Zr_2O_(12)材料具有优异的综合电化学性能,使其更具实际应用潜力和研究价值。实验与理论计算结果表明该材料具有较高的锂离子电导率(10~(-4)~10~(-3)S·cm~(-1)),能与负极金属锂及大部分正极材料稳定接触,电化学窗口高达6 V。根据近年来国内外在该类材料上的研究现状,主要从Li7La3Zr2O12的晶体结构特征、制备方法及掺杂改性等方面进行了详细介绍,最后阐述了Li_7La_3Zr_2O_(12)固态电解质材料在全固态锂电池中的发展前景及面临的挑战。  相似文献   

4.
郑玥雷  陈人杰  吴锋  李丽 《无机材料学报》2013,28(11):1172-1180
锂离子电池玻璃态电解质同晶体型电解质相比较具有导电性各向同性、锂离子电导率高等诸多优点, 开发在室温下具有较高的离子电导率及良好的化学、电化学稳定性的玻璃态电解质材料已经成为锂离子电池领域的重要研究方向之一。本文介绍了各种玻璃态电解质体系的导电特性及导电机理, 并重点分析与讨论混合网络形成体效应在一些典型玻璃态电解质体系中的微观作用机理。本文还总结了混合网络形成体效应在玻璃态电解质中发生的前提条件, 并指出深入研究玻璃态电解质的导电机理对开发出具有优异电化学性能的无机非晶固态电解质体系具有重要的指导意义。  相似文献   

5.
固态锂离子电池用锂离子导电微晶玻璃可分为氧化物系统和硫化物系统2类,它们的导电相结构与玻璃成分有关.表征锂离子导电微晶玻璃的性能参数主要有基础玻璃的成玻性能及微晶玻璃的离子导电性、机械强度和化学稳定性等.总结了锂离子导电微晶玻璃的国内外研究进展,最后展望了锂离子导电微晶玻璃的发展趋势.  相似文献   

6.
全固态聚合物电解质由于其突出的安全性能,在锂离子电池中具有潜在的应用前景,其研究备受关注.本文综述了锂离子电池用全固态聚合物电解质的最新研究进展.主要关注的是电化学性能,尤其是室温附近的离子电导率.对性能较好的聚合物固体电解质体系进行了概述.  相似文献   

7.
辛玉池 《功能材料》2021,52(4):4018-4022
以共聚物PEDOT-co-PEG作为锂金属阳极的表面改性层,采用磷酸铁锂复合阳极和“石榴石型”物质以及聚合氧乙烷聚合物组成的固体电解质制备了全固态锂离子电池。采用SEM分析了锂金属充电-放电反复操作后的形态学改变;采用电化学组抗谱试验研究了改性后的锂金属以及复合固体电解质接触面的稳定性并对全固态锂离子电池的充电-放电性能和界面稳定性进行了研究。结果表明,未改性的锂金属在固态电池充电-放电过程中会生成锂枝晶,从而导致全固态锂离子电池的高电流密度容量快速衰变;“石榴石型”物质以及聚合氧乙烷聚合物组成的固体电解质与改性后的金属锂具有良好的接触面,从而扼制锂枝晶的形成,提高全固态锂离子电池的机械性能;在PEDOT-co-PEG共聚物改性锂金属后,全固态锂离子电池的平稳性显著提高,且容量减弱放缓。  相似文献   

8.
锂空气电池[Li-O_2(air)]具有极高的能量密度,引起了越来越多的关注。全固态Li-O_2(air)电池使用不易燃的无机固体锂离子导体材料作为电池电解质,大大提高了电池的安全性能。研发具有高离子电导率、高稳定性的固体电解质对全固态Li-O_2(air)电池的发展起到极大的推动作用。此外,研发高性能正极催化剂、采取合理的技术手段提高电极/固体电解质界面性能也是全固态Li-O_2(air)电池面临的挑战。分别从正极、负极、固体电解质以及电极/电解质界面等方面对全固态Li-O_2(air)电池进行综述。  相似文献   

9.
全固态锂离子电池具有高安全性、高能量密度、宽使用温度范围以及长使用寿命等优势, 在动力电池汽车和大规模储能电网领域具有广阔的应用前景。作为全固态电池的重要组成部分, 无机固体电解质尤其是石榴石型固态电解质在室温下锂离子电导率可达10 -3 S·cm -1, 且对金属锂相对稳定, 在全固态电池的应用中具有明显的优势。然而正极与石榴石型固体电解质间接触性能以及界面的稳定性差, 使得电池表现出高的界面阻抗、低的库伦效率和差的循环性能。本文以全固态锂离子电池正极与石榴石型固体电解质界面为研究对象, 分析了正极/固体电解质的界面特性以及界面研究中存在的问题, 综述了正极复合、界面处理工艺、界面层引入等界面调控和改性的方法, 阐述了优化正极与石榴石型固体电解质界面结构, 改善界面润湿性的解决思路, 提出了未来全固态锂离子电池发展中有待进一步改进的关键问题, 为探索全固态锂离子电池的实际应用提供了借鉴。  相似文献   

10.
全固态锂离子电池以其高能量密度和高安全性成为具有广泛应用前景的下一代储能技术。然而,全固态锂离子电池的容量过低和寿命过短限制了其在储能领域的应用。其中,正极材料(活性材料、电子导电剂、离子导电剂及固态电解质等)固-固界面稳定性不佳限制了全固态锂离子电池的容量利用率和循环寿命。综上,介绍和讨论了正极材料固-固界面稳定性及优化方法,包括化学稳定性、电化学稳定性、机械稳定性和热稳定性等,同时归纳了常用的全固态锂离子电池正极材料固-固界面优化方法,为全固态锂离子电池的开发和应用提供参考。  相似文献   

11.
A semi-conducting phosphovanadate glass was tested as a possible material for positive electrode in solid state batteries.O.c. voltage with alkali metal (3.6 V/Li and 3.4 V/Na) is higher than for crystallized vanadium oxides and chemical intercalation of sodium or lithium is obtained using halogenated salts dissolved in organic solvents.  相似文献   

12.
锂离子电池是便携式电子产品、电动汽车和智能电网的理想电源。目前使用有机液体电解质的锂离子电池仍然存在安全问题和寿命不足的问题,而使用不燃的固态电解质的固态电池有望解决这些问题。从原理上讲,不燃的固体电解质可以从根本上防止电池的燃烧和爆炸,并且只允许锂离子在固体电解质中传输,可以减少副反应的发生。近年来,随着几种高离子电导率的固态电解质的出现,锂离子在固态电解质中的传输不再是瓶颈。然而,固态电池中各种固态成分具有不同的化学/物理/力学性能,因此在固态电池中存在多种类型的界面,包括松散的物理接触、晶界、化学和电化学反应界面等,这些都可能增加界面离子传输阻力。而正极材料与电解质之间的界面反应尤其复杂,深入理解这些复杂的正极侧界面及其反应特点是实现实用高比能固态电池的必要条件。因此,本文主要回顾了近年来在探索和理解正极/电解质界面上的工作,总结了固态电池中典型的正极侧界面类型及其各自独特的反应特征。  相似文献   

13.
The all-solid-state lithium batteries using solid electrolytes are considered to be the new generation of devices for energy storage, which might be a key solution for power electric and hybrid electric vehicles in the future. This review focuses on the crystal structures and electrochemical properties of sulfide solid electrolytes. They are classified to several subgroups according to their chemical compositions, namely thiophosphates, halide thiophosphates, sulfide without phosphorus, and glassy sulfides electrolytes, which might be potential solid electrolytes in lithium batteries and may replace the currently used polymeric electrolytes for LIBs. Through discussion, this review provides an insight into future promising sulfide electrolytes.  相似文献   

14.
Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all‐solid‐state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high‐performance sulfide solid‐state electrolytes. However, sulfide solid‐state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode–electrolyte interface and air stability, and 3) a cost‐effective approach for large‐scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid‐state electrolytes, and the development of sulfide‐based all‐solid‐state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage.  相似文献   

15.
Borohydride solid‐state electrolytes with room‐temperature ionic conductivity up to ≈70 mS cm?1 have achieved impressive progress and quickly taken their place among the superionic conductive solid‐state electrolytes. Here, the focus is on state‐of‐the‐art developments in borohydride solid‐state electrolytes, including their competitive ionic‐conductive performance, current limitations for practical applications in solid‐state batteries, and the strategies to address their problems. To open, fast Li/Na/Mg ionic conductivity in electrolytes with BH4 ? groups, approaches to engineering borohydrides with enhanced ionic conductivity, and later on the superionic conductivity of polyhedral borohydrides, their correlated conductive kinetics/thermodynamics, and the theoretically predicted high conductive derivatives are discussed. Furthermore, the validity of borohydride pairing with coated oxides, sulfur, organic electrodes, MgH2, TiS2, Li4Ti5O12, electrode materials, etc., is surveyed in solid‐state batteries. From the viewpoint of compatible cathodes, the stable electrochemical windows of borohydride solid‐state electrolytes, the electrode/electrolyte interface behavior and battery device design, and the performance optimization of borohydride‐based solid‐state batteries are also discussed in detail. A comprehensive coverage of emerging trends in borohydride solid‐state electrolytes is provided and future maps to promote better performance of borohydride SSEs are sketched out, which will pave the way for their further development in the field of energy storage.  相似文献   

16.
High‐energy lithium‐metal batteries are among the most promising candidates for next‐generation energy storage systems. With a high specific capacity and a low reduction potential, the Li‐metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li‐metal anodes. Recent studies have shown that the performance and safety of Li‐metal anodes can be significantly improved via organic electrolyte modification, Li‐metal interface protection, Li‐electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid‐state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li‐metal batteries. Inspired by the bright prospects of solid Li‐metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li‐metal batteries, such as low ionic conductivity of the electrolyte and Li–electrolyte interfacial problems. Here, the approaches to protect Li‐metal anodes from liquid batteries to solid‐state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li‐metal anodes are discussed to facilitate the practical application of Li‐metal batteries.  相似文献   

17.
All solid-state batteries are safe and potentially energy dense alternatives to conventional lithium ion batteries. However, current solid-state batteries are projected to costs well over $100/kWh. The high cost of solid-state batteries is attributed to both materials processing costs and low throughput manufacturing. Currently there are a range of solid electrolytes being examined and each material requires vastly different working environments and processing conditions. The processing environment (pressure and temperature) and cell operating conditions (pressure and temperature) influence costs. The need for high pressure during manufacturing and/or cell operation will ultimately increase plant footprint, costs, and machine operating times. Long term, for solid state batteries to become economical, conventional manufacturing approaches need to be adapted. In this perspective we discuss how material selection, processing approach, and system architecture will influence lithium-based solid state battery manufacturing.  相似文献   

18.
温兆银  李晶泽 《无机材料学报》2013,28(11):1163-1164
固态离子学是研究固体中快离子输运规律及其应用的科学。它是上世纪70年代发展起来的一门新兴学科, 重点研究具有快离子传导特性的固体电解质材料以及具有离子/电子混合传导特性的电极材料。近年来, 固体离子及混合导电化合物在二次电池、燃料电池、传感器、超级电容器、电色器件、太阳能电池等方面的应用取得了突破性进展, 锂离子电池在各种电子器件中的大规模应用及其新材料体系的发现[1-2]、钠硫电池在大规模储能应用中的领先地位、ZEBRA电池在储能市场上的崛起、固体氧传感器在市场上的稳步发展以及SOFC逐步迈进市场成为固态离子学领域一个个闪光点, 极大地促进了新能源利用、电动汽车开发以及智能电网建设等重大任务的实施, 多领域的科学家和工程技术人员投身到固态离子学的研究中。
  在众多的新能源技术研究方向中, 高比能量二次电池的研究是当前热点, 也是目前电动汽车开发和智能电网建设公认的瓶颈技术。近几年, 金属电极电池技术的发展使人们对二次电池的未来充满了信心。以金属为负极的二次电池得益于金属电极本身极高的比容量。金属负极主要以碱金属锂、钠和碱土金属镁为代表, 其中锂的重量和体积比容量分别高达3860 mAh/g和2062 mAh/cm3, 远高于目前商业化的碳类负极材料, 成为未来高比能量二次电池的目标。近期, 以金属锂负极活性材料的锂硫电池和锂空气电池的研究在国内外如火如荼, 并不断取得进展。
  这些电池不仅具有高比能量的特点, 更有价格低廉的绝对优势, 同时也存在尚需改进之处。(1)在锂硫电池方面, 美国Sion Power公司利用PolyPlus公司的锂负极保护膜技术, 有望实现锂硫电池能量密度500 Wh/kg及循环500次的目标[3]。就在近期, 英国Oxis Energy公司报道其研制的200 Wh/kg的锂硫电池预计循环1700~1800次后的容量维持率仍达80%, 该公司计划明年早些时候实现量产[4], 这无疑是对锂硫电池的有力推动。国内有众多研究锂硫电池的机构, 如防化研究院、国防科技大学、北京理工大学、上海硅酸盐研究所、南开大学等均研制了软包装锂硫电池[5]。上海硅酸盐研究所研制的硫电极在2C倍率下循环500次后比容量达到900 mAh/g以上。不过目前看来, 锂硫电池虽然前景良好, 但要在市场上展现其价值尚需开展很多工作。(2)在锂空气电池方面, 针对电解质隔膜、催化剂、载体等核心材料有大量的文献报道, 通过无碳电极设计以及基于LATP锂离子固体电解质的电池设计, 很好地改进了锂空气电池的基本性能[6-8], 但离实际应用还差距甚远, 其电池反应机理方面尚存在争议, 电池技术还没有取得公认的突破。然而, 以锂空气电池为代表的金属空气电池由于其极高的比能量仍是未来电动汽车无法抗拒的追逐目标。
  金属负极电池的开发在很大程度上取决于固体电解质新体系和新型电极材料的开发, 固态离子学成为高比能量二次电池研究与开发必须掌握的一门重要的科学, 无论是已经获得规模化应用的LiCoO2和LiFePO4等锂离子电池正极材料, Na-β/β″-Al2O3、ZrO2等离子导体, 还是新近突破的Li10GeP2S12和Li7La3Zr2O12[1-2]等锂离子导体新体系, 都为实现锂金属电池新的突破以及锂电池的全固体化、从而从根本上解决锂离子电池的安全性问题奠定了坚实的基础。正因为如此, 锂离子电池的企业界也在大力拓展市场的同时, 不断关注新型二次电池以及固态离子学的进展, 仅以我国两年一届的全国固态离子学学术会议为例, 其规模也从1980年的数十人发展到2012年第16届全国会议的与会代表400余人, 其中近20%代表来自电池与材料企业。可以说, 未来固态离子学将越来越发挥其重要作用, 为新能源技术的发展保驾护航。  相似文献   

19.
Owing to their safety, high energy density, and long cycling life, all‐solid‐state lithium batteries (ASSLBs) have been identified as promising systems to power portable electronic devices and electric vehicles. Developing high‐performance solid‐state electrolytes is vital for the successful commercialization of ASSLBs. In particular, polymer‐based composite solid electrolytes (PCSEs), derived from the incorporation of inorganic fillers into polymer solid electrolytes, have emerged as one of the most promising electrolyte candidates for ASSLBs because they can synergistically integrate many merits from their components. The development of PCSEs is summarized. Their major components, including typical polymer matrices and diverse inorganic fillers, are reviewed in detail. The effects of fillers on their ionic conductivity, mechanical strength, thermal/interfacial stability and possible Li+‐conductive mechanisms are discussed. Recent progress in a number of rationally constructed PCSEs by compositional and structural modulation based on different design concepts is introduced. Successful applications of PCSEs in various lithium‐battery systems including lithium–sulfur and lithium–gas batteries are evaluated. Finally, the challenges and future perspectives for developing high‐performance PCSEs are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号