共查询到19条相似文献,搜索用时 55 毫秒
1.
基于改进的粒子群和遗传算法的混合优化算法 总被引:1,自引:0,他引:1
分析粒子群算法在求解组合优化问题中的运行原理,对警车分布的优化问题建立了粒子群优化的数学模型,对基本粒子群优化算法中的速度范围、惯性权重等参数进行了改进,并通过仿真与基本粒子群算法比较,显示改进的粒子群算法,提高了优化结果.在改进的粒子群算法中引入遗传算法,将形成的新混合算法应用到求解警车最优执勤地点的分布问题,并与遗传算法和改进的粒子群算法仿真比较.结果表明,混合优化算法在收敛速度和精度上均有明显的提高. 相似文献
2.
粒子群优化算法及其与遗传算法的比较 总被引:18,自引:1,他引:18
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题。该文讨论粒子群优化算法的基本原理和实现步骤,分析了该算法中各参数的设置。通过一个测试函数,对粒子群优化算法与遗传算法进行了比较,结果表明粒子群优化算法在找寻最优解效率上好于遗传算法。 相似文献
3.
粒子群优化算法在函数优化上的研究与发展 总被引:1,自引:1,他引:1
粒子群优化算法(PSO)与其他演化算法相似,也是基于群体的。每个粒子被随机初始化以表示一个可能的解,并在解空间通过更新迭代搜索最优解。该算法的特点是简单容易实现而又功能强大。该算法最初被提出来主要应用于函数优化。经过几年的发展,已经出现了大量的改进算法。本文总结了这些改进算法的基本主要形式,并给出了未来可能的研究方向。 相似文献
4.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望. 相似文献
5.
6.
分布式电源(distributed generators,DG)在电网中渗透率不断提高,微电网群(multi-microgrid,MMG)作为就地消纳DG的小型电力系统,能有效解决DG出力不确定性带来的问题。针对MMG优化调度问题,建立了基于运行经济性的协同优化调度模型。为提高模型求解的精度与速度,提出了一种改进的二阶振荡粒子群算法。该算法首先通过Logistic映射初始化种群,然后采用自适应动态方法改变惯性权重,并引入4个振荡变量增加粒子群的多样性,仿照微分方程根的特性确定振荡变量范围,使算法前期全局振荡收敛,后期局部渐近收敛。最后利用仿真案例验证了所提算法求解MMG协同优化调度模型的有效性。 相似文献
7.
交流伺服系统由于其具有稳定性好、响应速度快等优点,在工控领域得到了广泛应用.但是采用传统控制策略难以获得满意的控制效果.针对这一问题,本文提出一种基于改进粒子群优化算法的PID控制策略,利用粒子群算法对控制器的初始参数进行优化,消除控制器的初始值对控制效果的影响,同时克服不确定因素对系统响应性能的不利影响,使其达到最佳工作状态.Matlab仿真结果表明,该控制策略有收敛速度快、控制精确度高及抗干扰能力强等优越性,改善了常规PID控制器的性能. 相似文献
8.
介绍了基本粒子群优化算法及其原理,针对其易陷入局部极值和后期收敛速度慢的缺点,研究了基于惯性权重因子的改进粒子群优化算法。通过测试函数对固定惯性权重和时变惯性权重参数的选择进行了系统的实验,并且分析了种群规模与学习因子参数对粒子群算法优化性能的影响。 相似文献
9.
粒子群优化算法的研究与展望 总被引:4,自引:0,他引:4
高渤 《重庆理工大学学报(自然科学版)》2006,20(11):62-64,68
粒子群优化算法是一种基于群智能的随机优化算法,具有简单易实现、设置参数少、全局优化能力强等优点.着重对粒子群优化算法中的基本算法、改进算法、应用领域和研究热点等方面做了较为详细的论述. 相似文献
10.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望. 相似文献
11.
针对粒子群优化算法容易陷入局部极值点、进化后期收敛速度慢、精度较差等缺点,把Hooke-Jeeves模式搜索方法作为粒子群优化算法的一个局部搜索算子,嵌入到粒子群算法中,Hooke-Jeeves的强局部搜索能力提高了粒子群优化算法的局部收敛速度和精度,从而提出了一种混合粒子群优化算法。通过基准函数和实例测试进行了验证,结果表明,提出的混合算法的收敛速度和精度均优于粒子群优化算法。 相似文献
12.
提出了一种求解成组技术中加工中心组成问题的改进粒子群优化算法.该算法包括建立问题数学模型;赋予粒子位置新的含义,并设计新的更新公式;设计了惯性权重新的计算形式;制定了新的子群间交叉策略及新的无约束适应度函数.仿真结果表明,改进粒子群优化算法是可行、高效的. 相似文献
13.
一种改进的多目标粒子群优化算法 总被引:1,自引:0,他引:1
针对多目标粒子群优化算法在迭代过程中收敛速度和多样性方面的不足,提出一种改进的多目标粒子群优化算法(IMOPSO).采用基于栅格和拥挤距离的协同外部档案维护策略,通过更准确地选择收敛性和多样性性能更好的非劣粒子作为全局最优值,加快整个种群的收敛速度;采用分段Logistic混沌映射、外部档案检测机制及修改的粒子速度更新公式,分别在初始化阶段和迭代过程中增强种群的多样性;最后,通过对标准测试函数仿真测试证明了改进后的算法能够快速收敛至Pareto最优前沿并保持较好的多样性. 相似文献
14.
求解CVaR投资组合优化问题之改进PSO算法 总被引:1,自引:0,他引:1
研究了基于CVaR约束的的最优投资决策问题,为避免维数障碍,针对Fredrik提出的CVaR投资组合优化线性规划模型还原为非线性规划。通过引入缩进因子,改进PSO算法,使粒子在迭代过程中保持在可行域内。最后,通过算例证明了该文方法的有效性,计算结果表明,投资组合优化后的损失期望收益率、标准差、受险价值、条件受险价值等重要风险衡量指标都有了较大改进。 相似文献
15.
电力系统无功优化是提高电网高效运行和节能的关键环节。建立了综合考虑有功网损最小、电压偏差最小及静态电压裕度最大的三目标电力系统无功优化模型。提出了遗传粒子群(GAPSO)混合算法,并将算法运用于IEEE14与IEEE30节点电力系统无功优化中。该算法先通过选择操作,选出优秀的样本,在利用交叉操作增加种群的多样性。然后进行变异操作提高种群的局部搜索能力。通过数据计算和比较GAPSO算法在收敛速度、精度和全局搜索能力上均优于常规GA算法和PSO算法。结果验证了模型和算法的有效性和实用性。 相似文献
16.
给出了一种具有随机变异特性的改进型粒子群协同优化算法,该算法克服了传统粒子群算法易陷入局部最优解且后续迭代过程速度慢的缺点.在迭代过程中,粒子的变异概率取决于粒子的适应度值以及当前所有粒子的聚集度.通过变异,粒子可有效地探索新的空间领域,从而可以有效地避免陷入局部最优解.Benchmark函数实验结果表明,优化后的粒子群算法比传统粒子群算法具有较快的收敛速度和较高的全局收敛能力. 相似文献
17.
给出了一种具有随机变异特性的改进型粒子群协同优化算法,该算法克服了传统粒子群算法易陷入局部最优解且后续迭代过程速度慢的缺点.在迭代过程中,粒子的变异概率取决于粒子的适应度值以及当前所有粒子的聚集度.通过变异,粒子可有效地探索新的空间领域,从而可以有效地避免陷入局部最优解.Benchma呔函数实验结果表明,优化后的粒子群算法比传统粒子群算法具有较快的收敛速度和较高的全局收敛能力. 相似文献
18.
为解决电力系统中的经济负荷分配问题,将改进粒子群算法用于其中。该算法是以基本粒子群算法为基础,利用优化惯性权重策略以及改进最优最差粒子策略,使改进粒子群算法具有高效率全局搜索能力。对三个算例进行仿真测试,证实该算法可有效地解决经济负荷分配问题;性能对比显示,该算法求得的解优于基本粒子群算法及其它优化算法所求得的解。 相似文献
19.
李正燕 《湖南工业职业技术学院学报》2008,8(5)
提出了一种基于粒子群算法(PSO)和遗传算法(GA)相混合的配电网无功规划算法。该算法利用遗传算法收敛效果好和粒子群算法收敛速度快的特点,计算结果表明:该算法是收敛的、有效的。 相似文献