首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We investigated isomorphous substitution of several metal atoms in the Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to understand structure-property correlations. Our investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius (n = 1) + (n = 2) intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric/tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV → MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3−2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3−2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Two new members of this family, Bi2Sr2Nb2RuO12 and Bi2SrNaNb2RuO12 that are analogous to Bi2Sr2Nb2TiO12, possessing tetragonal (I4/mmm) Aurivillius structure have also been synthesized.  相似文献   

2.
The synthesis and structure of triple layered Bi2Ln2Ti3O12 Aurivillius phases (Ln=La, Pr, Nd and Sm), prepared from K2Ln2Ti3O10 Ruddlesden-Popper precursors, has been investigated. These materials adopt a body centred tetragonal structure (space group I4/mmm, with unit cell parameters a∼3.8 Å and c∼33 Å) comprising a regular intergrowth of [Bi2O2]2+ fluorite-type and [Ln2Ti3O10]2− perovskite-type layers. A significant degree of cation disorder is present in the Bi2Ln2Ti3O12 system, involving the cross-substitution of Ln/Bi cations onto the Bi/Ln sites in the fluorite- and perovskite-type layers, respectively. As the size of the lanthanide cation is reduced, Bi/Ln disorder is significantly suppressed due to the effect of bond length mismatch in the perovskite-type layer in the crystal structure of Bi2Ln2Ti3O12. This offers a potential strategy for the chemical control of cation disorder in the Bi2Ln2Ti3O12 system.  相似文献   

3.
We describe transformations of the Dion-Jacobson (D-J) phases, KLaNb2O7 and RbBiNb2O7, to the Aurivillius (A) phases, (PbBiO2)LaNb2O7 (1) and (PbBiO2)BiNb2O7 (2), in a metathesis reaction with PbBiO2Cl. Oxide 1 adopts centrosymmetric tetragonal structure (a = 3.905(1) Å, c = 25.66(1) Å), whereas oxide 2 crystallizes in a noncentrosymmetric orthorhombic (A21am) (a = 5.489(1) Å, b = 5.496(2) Å, c = 25.53(1) Å) structure. Oxide 2 shows a distinct SHG response towards 1064 nm laser radiation. The role of La3+ versus Bi3+ in the perovskite slabs for the occurrence of noncentrosymmetric structure/ferroic property in these materials is pointed out.  相似文献   

4.
Single crystals of a new bismuth vanadate, Bi3.33(VO4)2O2 was prepared by hydrothermal reaction using a hydrated sodium bismuthate, NaBiO3·nH2O as one of the starting compounds. The crystal structure was determined by using single crystal X-ray diffraction data. This compound crystallizes in the triclinic space group (#2) with a = 7.114(1), b = 7.844(2), c = 9.372(2) Å, α = 106.090(7), β = 94.468(7) and γ = 112.506(8)°, Z = 2 and the final R factors are R1 = 0.052 and wR2 = 0.14 for 2085 unique reflections. The crystal structure is composed by four bismuth atoms with the coordination number of 6 or 8 and two VO4 tetrahedra, and one of four bismuth atoms is statistically distributed in the splitting sites with the distance of 0.83 Å. This compound exhibited photocatalytic behavior for decomposition of phenol under visible light irradiation and its activity was less than that of monoclinic BiVO4.  相似文献   

5.
The crystal structure of Pb3BiV3O12 was solved using single-crystal X-ray diffraction technique. The compound crystallizes in the cubic system (No. 220) with eulytite structure with a = 10.7490(7) Å, V = 1241.95(14) Å3 and Z = 4. The final R1 value of 0.0198 (wR2=0.0384) was achieved for 359 independent reflections during the structure refinement. The Pb2+ and Bi3+ cations occupy the special position (16c) while the oxygen anions occupy the general position (48e) in the crystal structure. Unlike many other eulytite compounds, all the crystallographic positions are fully occupied. The structure consists of edge-shared Pb/Bi octahedra linked at the corners to independent [VO4]3− tetrahedra units, generating a eulytite-type network in the crystal lattice.  相似文献   

6.
Bi2O4−x, a Bi mixed-valence phase was prepared at 95 °C, by a precipitation process, in a basic medium with a highly oxidizing K2S2O8/Na2S2O8. This phase has a low thermal stability as it decomposes below 400 °C in a multiple step process by some O2 losses prior to finally transforming into γ-Bi2O3. The as-prepared powders are 50-60 nm in size with a narrow size distribution. Optical spectra of Bi2O4−x exhibit a broad absorption band with a band gap of ∼1.4 eV as compared to 2.61 eV for Bi2O3. The composition of this non-stoichiometric phase, which crystallizes in cubic fluorite related structure with a cell parameter of 5.538(3) Å, is Bi2O3.65 ± 0.10.  相似文献   

7.
A fluorite-like solid solution Ba1 − xBixOzF2 + x − 2z on the basis of cubic BaF2 was synthesised in the BaF2-Bi2O3-BiF3 system and the homogeneity range at 873 K was determined. The samples were studied by X-ray powder diffraction and electron diffraction, and their transport properties were measured by the complex impedance method at 300-623 K. Tendencies of variation of lattice parameters and transport properties were determined. These tendencies are discussed on the basis of a defect clustering hypothesis. Thermal treatment at 573 K of the solid solution, quenched from 873 K results in the formation of a new ordered tetragonal fluorite-like phase with lattice parameters a = 9.5355(4) Å, c = 18.151(1) Å.  相似文献   

8.
Crystalline Na3Bi2P3O12, K3Bi2P3O12 and glassy K3Bi2P3O12 compounds were prepared by solid-state reaction method. The prepared samples are characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry. The crystalline materials are found to be orthorhombic. The electrical conductivity measurements on the crystalline and glassy samples show that at ∼373 K, the σDC for crystalline K3Bi2P3O12 (0.81 × 10−8 S/cm) is about two orders of magnitude higher than the corresponding glassy phase (1.25 × 10−10 S/cm). The scaling results show that the conductivity relaxation mechanism is independent of temperature.  相似文献   

9.
The Bi1−xLnxO1.5 solid solutions (Ln=La, Pr, Nd), of the β21/ε (Bi-Sr-O) structural type, have been investigated in their Ln-rich domains. For Ln=La, Pr, and Nd, the upper limits are 0.35, 0.35 and 0.33, respectively. The Bi4Ln2O9 ε phase (x=0.33) appears to be the single definite compound. For Bi4La2O9, Bi4Pr2O9 and Bi4Nd2O9, the ε-type cells are respectively: a=9.484(4) Å, b=3.982(2) Å, c=7.030(3) Å, β=104.75(3)°; a=9.470(5) Å, b=3.945(2) Å, c=6.968(4) Å, β=104.73(3)° and a=9.439(3) Å, b=3.944(2) Å, c=6.923(2) Å, β=105.03(3)°. Upon heating, each monoclinic (ε) compound transforms successively into rhombohedral phases (β21) and finally into a cubic fluorite-type phase. For La- and Pr-based compounds, all transitions are reversible; for Nd, depending on the thermal treatment, the reversibility of ε→β2 can be incomplete. These transformations are characterized using X-ray thermodiffractometry, differential thermal analysis, dilatometry and impedance spectroscopy versus temperature. Examination of Bi4(Ln, Ln′)2O9 samples allows to correlate the evolution of the thermal behavior and of the unit cell parameters, to the lanthanide size. A partial plot of the (Bi2O3)1−x-(La2O3)x phase diagram (0≤x≤0.40) is proposed.  相似文献   

10.
A lithium bismuth phosphate, Li2Bi14.67(PO4)6O14, has been synthesized for the first time by the solid-state method. The crystal structure was determined by single crystal X-ray diffraction at 150 K. Li2Bi14.67(PO4)6O14 crystallizes in the monoclinic system C2/c (No. 15), with a = 30.8189(4) Å, b = 5.2691(3) Å, c = 24.5302(3) Å, β = 122.84(2)°, V = 3346.81(1) Å3 and Z = 2. The structure along the b axis consists of layers of [Bi2O2] units as the basic building block. These are separated by isolated PO4 and LiO4 tetrahedra. The oxygen co-ordination around two of the phosphorus atoms is disordered. Solid-state 7Li NMR studies confirm the presence of lithium in the structure. The material shows ionic conductivity of the order of 10−5 S cm−1 at 600 °C.  相似文献   

11.
Chemical preparation, crystal structure, calorimetric and spectroscopic investigations (IR and RMN) are given for a new non-centrosymmetric organic-cation dihydrogen phosphate-arsenate [H2(C4H10N2)][H2(As, P)O4]2. This compound is triclinic P1 with the following unit-cell parameters: a = 7.082(2) Å, b = 7.796(1) Å, c = 12.05(3) Å, α = 95.37(2)°, β = 98.38(3)°, γ = 62.98(1)°, Z = 2, V = 586.2(1) Å3 and Dx = 1.836 g cm−3. The crystal structure has been solved and refined to R = 0.03 using 2328 independent reflections. The structure can be described as infinite (H2XO)n chains spreading parallel to the b direction. These chains are themselves interconnected by a set of NH?O hydrogen bonds generated by the organic entities, alternating with the chains. Solid-state 13C, 15N and 31P MAS NMR spectroscopies are in agreement with the X-ray structure.  相似文献   

12.
Sr10Al6O19 is monoclinic, space group C12/c1, a=34.5823(21) Å, b=7.8460(6) Å, c=15.7485(9) Å, β=103.68(1)°, V=4151.9(7) Å3, Z=8. The structure has been solved from a single crystal diffraction dataset by direct methods and subsequently refined by a full-matrix least-squares process to a residual index of R(|F|)=0.038 for 2537 observed reflections with I>2σ(I). The compound is an oligoaluminate containing highly puckered [Al6O19]-groups of corner-sharing tetrahedra; it is the first purely aluminate cluster of this type, but it resembles the [□6O19]-group recently found in α-Sr106O19. Linkage between the hexamers is provided by 11 crystallographically different strontium atoms located in planes parallel (1 0 0). They are coordinated by six-eight next oxygen neighbours. The structure can be derived from perovskite, ABO3, by introducing ordered vacancies into the substructure of the oxygen atoms. The A-sites in Sr10Al6O19 are exclusively occupied by Sr atoms, whereas strontium and aluminum atoms reside on the B-positions in the ratio 1:3. The relationship with perovskite can be expressed in the crystal chemical formula Sr(Al3/4Sr1/4)(O19/85/8).  相似文献   

13.
The subsolidus phase equilibria of the Li2O-Ta2O5-B2O3, K2O-Ta2O5-B2O3 and Li2O-WO3-B2O3 systems have been investigated mainly by means of the powder X-ray diffraction method. Two ternary compounds, KTaB2O6 and K3Ta3B2O12 were confirmed in the system K2O-Ta2O5-B2O3. Crystal structure of compound KTaB2O6 has been refined from X-ray powder diffraction data using the Rietveld method. The compound crystallizes in the orthorhombic, space group Pmn21 (No. 31), with lattice parameters a = 7.3253(4) Å, b = 3.8402(2) Å, c = 9.3040(5) Å, z = 2 and Dcalc = 4.283 g/cm3. The powder second harmonic generation (SHG) coefficients of KTaB2O6 and K3Ta3B2O12 were five times and two times as large as that of KH2PO4 (KDP), respectively.  相似文献   

14.
Crystals of K2Hf2O5 and K4Hf5O12 were grown from molten potassium hydroxide flux. The crystal structures were determined by single-crystal X-ray diffraction. K2Hf2O5 crystallizes in the space group Pnna of the orthorhombic system, with unit cell dimensions of a = 5.780(1) Å, b = 10.640(2) Å, and c = 8.666(2) Å. This compound contains infinite chains of HfO6 octahedra that form a channel structure. K4Hf5O12 crystallizes in the space group of the trigonal system, with unit cell dimensions of a = 5.7877(2) Å and c = 10.3693(7) Å. This compound possesses a layered structure with six-coordinate Hf in three different coordination environments (trigonal prismatic, distorted octahedral, and regular octahedral).  相似文献   

15.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

16.
Chemical preparation, crystal structure and NMR spectroscopy of a new organic cation 5-chloro(2,4-dimethoxy)anilinium monophosphate H2PO4 are given. This new compound crystallizes in the monoclinic system, with the space group P21/c and the following parameters: a = 5.524(2) Å, b = 9.303(2) Å, c = 23.388(2) Å, β = 90.66(4), V = 1201.8(2) Å3, Z = 4 and Dx = 1.573 g cm−3. Crystal structure has been determined and refined to R = 0.031 and Rw = 0.080 using 1702 independent reflections. Structure can be described as an infinite (H2PO4)nn corrugated chains in the a-direction. The organic groups (5-Cl-2,4-(OCH3)2C6H2NH3)+ are anchored between adjacent polyanions through multiple hydrogen bonds. This compound is also investigated by IR, thermal, and solid-state, 13C, 31P MAS NMR spectroscopies.  相似文献   

17.
Undoped and doped either by Eu3+ or Tb3+ bismuth borate Ba3BiB9O18 was structurally characterized and analyzed by fluorescence spectroscopy. Belonging to synthetic borate member of the family Ba3XB9O18, layers of planar triangular B3O6 groups connecting with deformed BaO6 hexagons are interleaved by 9-coordinate Ba atoms, and 6-coordinate Bi atoms. Its crystal structure was determined and refined from powder X-ray diffraction data by the Rietveld method and the results showed that Ba3BiB9O18 belongs to space group P63/m with unit cell dimensions of a = 7.1999(2) Å, c = 17.3567(6) Å, and z = 2. Curves of differential thermal analysis and thermogravimetric analysis showed that Ba3BiB9O18 is a congruent melting compound and chemically stable above 728 °C. Ba3Bi1−xEuxB9O18 and Ba3Bi1−xTbxB9O18 form a continuous solid solution from x = 0.01 to x = 0.9. The ultraviolet excited photoluminescence intensity increased with both Eu3+ and Tb3+ concentration in the matrix of Ba3BiB9O18. There may be an interesting correlation between spectroscopic properties and lattice structural features of doped Ba3BiB9O18.  相似文献   

18.
Supercritical fluids are shown to be an excellent reaction media for the synthesis of novel solid state phases at intermediate temperatures. LiVGe2O6 and NaVGe2O6 have the common pyroxene structure composed of VO6 linear chains. NaVGe2O6 crystallizes in the monoclinic space group C2/c with four formula units having cell dimensions a = 9.960(4) Å, b = 8.853(10) Å, c = 5.4861(10) Å, β = 106.403(3)°. The structure was refined until R = 0.0290 and Rw = 0.0370. For LiVGe2O6 in space group P21/c: a = 9.8508(7) Å, b = 8.754(3) Å, c = 5.3948(13) Å, β = 108(3)°, R = 0.0240 and Rw = 0.0250. The compounds contain edge-shared VO6 octahedral chains and corner-shared GeO4 tetrahedral chains. The presence of these VO6 chains results in spin-Peierls distortion. Structural and physical characterization of the compounds are reported.  相似文献   

19.
The anion-excess ordered fluorite-related phase Ba2.1Bi0.9(O, F)6.8−δ has been synthesized by a solid state reaction of BaF2, BiF3 and Bi2O3 at 873 K with subsequent short annealing at 573 K. The crystal structure of the new phase has been solved using electron diffraction and X-ray powder diffraction (a = 9.5372(1) Å, c = 18.1623(3) Å, space group I4/m, RI = 0.025, RP = 0.029). Interstitial anions in the fluorite-based structure are considered to form isolated cuboctahedral 8:12:0 clusters. The structural relationship between the oxyfluoride phase Ba2.1Bi0.9(O, F)6.8−δ and similar rare-earth-based fluorides is discussed.  相似文献   

20.
Potassium manganese(III) monohydrogentriphosphate KMnHP3O10 was synthesized by flux method and characterized by single-crystal X-ray diffraction, crystallizes in the monoclinic system with centric space group C2/c. The parameters of the unit cell are a = 12.104(1), b = 8.287(1). c = 9.150(1) Å, β = 110.97(1)° and Z = 4. The structure was solved at 296 K using 893 independent reflections and refined until R(F) = 0.022; wR(F2) = 0.045. The atomic arrangement of the title compound consists of MnO6 octahedra linked by hydrogentriphosphate anions to form a three-dimensional framework containing tunnels parallel to the c-axis where the K+ cations are inserted. The structure of KMnHP3O10 contains a single Mn site which is surrounded by typical Jahn-Teller [2 + 2 + 2] distorted octahedron. The title material has been also characterized by different physico-chemical techniques: powder X-ray diffraction, IR, NMR and CI spectroscopies and DTA-TGA-DSC thermal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号