首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

2.
The ferromagnetic metallic oxide, SrRuO3 (TC ∼ 165 K) undergoes structural, magnetic and metal-insulator transitions upon substitution of Cu at the Ru-site. For x = 0.2 in SrRu1−xCuxO3, the structure becomes a tetragonal with the space group I4/mcm and there is a signature of both ferromagnetic (TC = 65 K) and antiferromagnetic (TN = 32 K) ordering due to possible magnetic phase separation. The antiferromagnetism arises due to short range ordering of Cu- and Ru-moments. Jahn-Teller distortion of (Ru,Cu)-O6 octahedra indicates that the copper ions are in 2+ oxidation state with 6t2g3eg electronic configuration. For x ≥ 0.1, narrowing of Ru-4d bandwidth by the substitution of Cu ions results in semiconducting behavior. For x = 0.3, the ac and dc susceptibility measurements indicate a spin glass behavior. The origin of spin glass behavior has been attributed to competing ferromagnetic and antiferromagnetic interactions.  相似文献   

3.
The grain size and the density of the Zn1 − xSnxO (0 ≤ x ≤ 0.05) samples decreased with increasing SnO2 content. The addition of a small amount of SnO2 (x ≤ 0.01) to ZnO led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient, resulting in a significant increase in the power factor. The thermoelectric power factor was maximized to a value of 1.25 × 10−3 Wm−1 K−2 at 1073 K for the Zn0.99Sn0.01O sample.  相似文献   

4.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

5.
151Eu-Mössbauer spectroscopic and powder X-ray diffraction (XRD) study has been performed for the EuyM1−yO2−x (M = Th and U) systems over the entire composition range of 0 ≤ y ≤ 1.0. The XRD results of the Eu-Th system showed that a very wide defect-fluorite (DF) type phase in which oxygen vacancies (VO) are disordered (x = y/2) is formed for 0 ≤ y < 0.5 and that two-phase regions sandwitching a narrow C-type (C) single phase around y ≈ 0.8 appear for 0.5 < y < 0.8 (DF + C) and 0.82 < y < 1.0 (C + B-type (monoclinic) Eu2O3). The Mössbauer results show that the isomer shifts (ISs) of Eu3+ in this system smoothly increase with Eu composition, y. The decrease of average coordination number (CN) of O2− around Eu3+ with increasing y (CN = 8 − 2y) (x = y/2) results in the decrease of the average EuO bond length, which is due to the decrease of repulsion force between O2− anions. This result confirms that the IS of Eu3+ correlates well with the average EuO bond length in oxide systems. For the Eu-U system, the lattice parameter, a0, of the system decreases almost linearly with y, in accordance with the calculated a0 versus y curve for the oxygen-stoichiometric (i.e. x = 0) fluorite-type dioxide (CN = 8). The ISs of Eu3+ in this composition range remain almost constant around 0.5 mm/s, which is comparable to those of pyrochlore oxides (Eu2Zr2O7 and Eu2Hf2O7 (y = 0.5)) with O2−-eight-fold coordinated Eu3+(CN = 8).  相似文献   

6.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K.  相似文献   

7.
Two series of mixed oxides with formula [Eu2−xMx][Sn2−xMx]O7−3x/2 (M = Mg or Zn) have been synthesized. The study by X-ray diffraction and Fourier transform infrared spectroscopy shows that the solids obtained are new non-stoichiometric solid solutions with the pyrochlore type structure. For both series a decrease of the cell parameter is observed when the degree of substitution, x, increases. The structural refinements (X-ray studies) were achieved in the space group Fd-3m, no. 227 (origin at center -3m) by using the Fullprof software. The Rietveld refinements show that the divalent cations M2+ (Mg2+, Zn2+) substitute isomorphically for Eu3+ and Sn4+ ions producing vacancies in the anionic sublattice.  相似文献   

8.
A series of mixed fluorides with general composition Ba1−xNdxF2+x (0.00≤x≤1.00) was prepared by vacuum heat treatment of the mixture of starting fluorides, and analyzed by powder XRD. From the XRD analysis, the low temperature phase equilibria in BaF2-NdF3 system is elucidated. The initial compositions in this series, that is, up to the nominal composition Ba0.65Nd0.35F2.35 (x≤0.35) exist as cubic fluorite-type solid solution. Beyond the solid solution limit, that is, x>0.35, a rhombohedral fluorite related ordered phase is observed. Further, NdF3-rich compositions (x≥0.50) exist as a mixture of rhombohedral ordered phase and NdF3 (tysonite)-type phase. About 10 mol% of BaF2 could be retained in the NdF3 lattice, forming a tysonite-type solid solution, under the short annealed and slow cooled conditions.  相似文献   

9.
Polycrystalline Cd3−xyCuxAyTeO6 (A = Li, Na) samples were prepared by solid-state reaction, and their crystal structure and electrical properties were investigated. In Cd3−xCuxTeO6 and Cd3−yAyTeO6 (A = Li, Na), the maxim solubility of x and y was 0.15 and 0.15 for A = Li, 0.05 for A = Na, respectively. For co-substituted samples Cd2.9−yCu0.1LiyTeO6 and Cd2.9−yCu0.1NayTeO6, the maxim solubility of x was the same as single substitution above-mentioned. The alkali-metal substituted samples Cd3−yAyTeO6 (A = Li, Na) showed a negative Seebeck coefficient, which indicates that the major conduction carriers are electron. On the other hand, the co-substituted samples Cd2.9−yCu0.1AyTeO6 (A = Li, Na) represented a positive Seebeck coefficient, and major conduction carriers were hole through substitution by copper ions.  相似文献   

10.
The CuCr1−xRhxO2 series is investigated by X-ray diffraction, magnetization measurements and Raman spectroscopy on ceramic samples. It is found that a delafossite solid solution is maintained up to x = 0.2 in CuCr1−xRhxO2. The small observed variation in cell parameters is consistent with the small difference between the ionic radii of Cr3+ and Rh3+. A significant broadening of X-ray reflections is observed and when analyzed using the Williamson-Hall relationship showed that the strain generated by Rh substitution is strongly anisotropic, affecting mainly (Cr,Rh)-O bonds in the ab plane. Room temperature Raman spectra displayed three main Raman active modes. All modes shift to lower frequency and undergo significant changes in intensity with increasing Rh content, showing the effect of Rh atoms on the M3+-O bond strength. The magnetic behavior of CuCr1−xRhxO2 samples was investigated as a function of temperature and applied field. At high temperature paramagnetic behavior, and at low temperature, evidence for weak ferromagnetism, reinforced by a hysteresis loop at 4 K is observed. The magnetic behavior of CuCr1−xRhxO2 is attributed to the disorder of Cr and Rh in octahedral sites resulting in short-range Cr-O-Cr and Cr-O-Rh interactions, which give rise to short-range weak ferromagnetism.  相似文献   

11.
Up to 10 at.% of copper readily substitutes for cerium in ceria. It is found that at oxygen partial pressures between 0.21 atm and 10−5 atm, CuxCe1−xO2−δ (0 ≤ x ≤ 0.10) solid solution behave as an oxide-ion electrolyte. Interestingly, Cu0.10Ce0.90O2−δ exhibits the oxide-ion conductivity of ca. 10−4 Ω−1 cm−1 at 600 °C at an oxygen partial pressure of 10−5 atm.  相似文献   

12.
Polycrystalline Sr2Fe1−xGaxMoO6 (0 ≤ x ≤ 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperature decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.  相似文献   

13.
We synthesized the spinel-type compounds belonging to the Mn2−xV1+xO4 series with x = 0, 1/3 and 1 as polycrystalline powders. Crystal and magnetic structures were refined using synchrotron X-ray and neutron powder diffraction. At 300 K all members crystallize in the cubic system, space group , and show a structural transition at low temperature, changing to a tetragonal symmetry (space group I41/amd). Cations distributions between octahedral and tetrahedral sites were refined from neutrons diffraction (ND) data and explained based on crystal field stabilization energies (CFSE) and ionic radii. The magnetic unit cell is the same as the crystallographic one, having identical symmetry relations. The magnetic structure was refined as an arrangement of collinear spins, antiferromagnetically ordered, parallel to the c-axis of the unit cell. The refined site magnetic moments are smaller than those obtained from hysteresis cycles of the M vs. H measurements, indicating that some non-collinear disordered component coexists with the ordered component along the c-axis.  相似文献   

14.
A series of inorganic phosphate crystals have been hydrothermally synthesized, which have high chemical stability and can keep their crystal structure after acid/base treatments. Its cation-exchange properties have been investigated and the results show that it is an excellent ion exchanger with high exchange capacities for H+, Li+ and Pb2+ ions (12.74, 6.98 and 3.92 mequiv./g, respectively). Selective extractions of Li+ and Pb2+ from the synthetic mixtures containing (Li+, Sr+, K+, Mg2+, Ca2+ and Ba2+) and (Pb2+, Ca2+, Ba2+, Co2+, Ni2+, Zn2+ and Mg2+) have been observed. The reasons of the high exchange selection of NATP for Li+ and Pb2+ ions have been discussed.  相似文献   

15.
The pseudo-binary TiO2-FeSbO4 system was investigated by means of thermogravimetric analysis below 1673 K in O2. Rutile-type solid solutions were synthesised at 1373 K in O2 by means of a solid state reaction between the two pure end members TiO2 (rutile) and FeSbO4 mixed in stoichiometric amounts. Thermal stability of the (Ti2xFe1−xSb1−x)O4 solid solution increases with rutile content; equimolar (Ti1.00Fe0.50Sb0.50)O4 solid solutions decompose at about 1673 K forming a TiO2-enriched solid solution and FeSbO4, that subsequently decomposes into Fe2O3 (hematite) and a volatile Sb oxide, probably Sb4O6. For compositions characterised by higher Ti content the decomposition temperature is higher than 1673 K.  相似文献   

16.
LiMxMn2−xO4 (M = Ni2+, Co3+, and Ti4+; 0 ≤ x ≤ 0.2) spinels were prepared via a single-step ultrasonic spray pyrolysis method. Comparative studies on powder properties and high rate charge-discharge electrochemical performances (from 1 to 15 C) were performed. XRD identified that pure spinel phase was obtained and M was successfully substituted for Mn in spinel lattice. SEM and TEM studies confirmed that powders had a feature of ‘spherical nanostructural’, that is, powders consisted of spherical secondary particles with the size of about 1 μm, which were developed from close-packed primary particles with several tens of nanometers. Substitutions enhanced density of second particles to different extents, depending on M and its content. Charge-discharge tests showed that as-prepared LiMn2O4 could deliver excellent rate performance (around 100 mAh/g at 10 C). Ni substitution contributed to improving electrochemical performances. In the voltage range of 4.95-3.5 V, the materials showed much better electrochemical performances than LiMn2O4 in terms of capacity, cycleability and rate capability.  相似文献   

17.
Nanocrystalline La1−xCdxFeO3 (0.0 ≤ x ≤ 0.3) solid solutions have been synthesized by a single-step solution combustion method at a relatively low temperature of 400 °C. The combustion-synthesized solid solutions were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and magnetic measurements. The crystal structure examined by XRD indicates that the samples were single-phase, and crystallize in an orthorhombic (space group, Pbnm no. 62) structure. The parent and doped compounds showed canted antiferromagnetic behavior associated with an increase in magnetic moment with Cd doping. The changes in magnetic properties of the materials are correlated to the changes in structural features resulting from the Rietveld structural refinement of the materials.  相似文献   

18.
Na1−xKxMgF3 (0≤x≤1) solid-solutions were synthesized and the phase diagram of NaMgF3-KMgF3 system was determined by high temperature X-ray powder diffraction experiments and differential thermal analysis (DTA). This system is characterized by a complete series of solid solutions, with a minimum in the solidus at 30 mol% KMgF3 and 1279 K. No immiscibility gap was found. The crystal system changes from orthorhombic to cubic at x=0.22 at room temperature. The volume change of the unit cell as a function of composition shows a large deviation (excess volume) from Vegard’s law for solid solution. The transition temperatures of NaMgF3 and Na0.9K0.1MgF3 from orthorhombic to cubic are 1043 and 723 K, respectively. The transition temperature decreases rapidly by the effect of replacing Na by K. Axial ratios of b/a and c/√2a in orthorhombic NaMgF3 and Na0.9K0.1MgF3 decrease linearly with temperature toward the transition and then discontinuously changes to cubic at the transition point.  相似文献   

19.
PLT (Pb1−xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 °C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (DBET) with the values of the average crystallite sizes obtained by XRD (DXRD).  相似文献   

20.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号