首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure.  相似文献   

2.
About 1.05 µm-thick Pb(Zr0.5Ti0.5)O3 (PZT) films containing Fe3O4 nanoparticles were deposited on LaNiO3-coated silicon substrates through a sol-gel technique. Fe3O4 nanoparticles were effectively dispersed into PZT solution under the involvement of polyvinylpyrrolidone. X-ray diffraction confirmed the coexistence of PZT and Fe3O4 phases without other impurity phases. Scanning electron microscope revealed that the thick composite films possess well-defined and crack-free microstructure. The composite films exhibit good ferroelectric and ferromagnetic properties at room temperature. An obvious magnetodielectric effect has been demonstrated in the Pb(Zr0.5Ti0.5)O3/Fe3O4 composite films. Magnetic field induced change in ferroelectric polarization loop may support the possible magnetoelectric coupling between PZT and Fe3O4 phases.  相似文献   

3.
Bismuth titanate (Bi4Ti3O12—BIT) films were evaluated for use as lead-free piezoelectric thin-films in micro-electromechanical systems. The films were grown by the polymeric precursor method on Pt/Ti/SiO2/Si (1 0 0) (Pt) bottom electrodes at 700 °C for 2 h in static air and oxygen atmospheres. The domain structure was investigated by piezoresponse force microscopy (PFM). Annealing in static air leads to better ferroelectric properties, higher remanent polarization, lower drive voltages and higher piezoelectric coefficient. On the other hand, oxygen atmosphere favors the imprint phenomenon and reduces the piezoelectric coefficient dramatically. Impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the films annealed in static air atmopshere.  相似文献   

4.
A series of PbZr0.58Ti0.42O3 (PZT) thin films with various Bi3.25La0.75Ti3O12 (BLT) buffer layer thicknesses were deposited on Pt/TiO2/SiO2/p-Si(100) substrates by RF magnetron sputtering. The X-ray diffraction measurements of PZT film and PZT/BLT multilayered films illustrate that the pure PZT film shows (111) preferential orientation, and the PZT/BLT films show (110) preferential orientation with increasing thickness of the BLT layer. There are no obvious diffraction peaks for the BLT buffer layer in the multilayered films, for interaction effect between the bottom BLT and top PZT films during annealing at the same time. From the surface images of field-emission scanning electron microscope, there are the maximum number of largest-size grains in PZT/BLT(30 nm) film among all the samples. The growth direction and grain size have significant effects on ferroelectric properties of the multilayered films. The fatigue characteristics of PZT and PZT/BLT films suggest that 30-nm-thick BLT is just an effective buffer layer enough to alleviate the accumulation of oxygen vacancies near the PZT/BLT interface. The comparison of these results with that of PZT/Pt/TiO2/SiO2/p-Si(100) basic structured film suggests that the buffer layer with an appropriate thickness can improve the ferroelectric properties of multilayered films greatly.  相似文献   

5.
The structure evolution of Pb(Zr0.5Ti0.5)O3 thin films with different thicknesses on the Pt(1 1 1)/Ti/SiO2/Si substrates has been investigated using X-ray diffraction and Raman scattering. Differing from Pb(Zr0.5Ti0.5)O3 bulk ceramic with a tetragonal phase, our results indicate that for PZT thin films with the same composition monoclinic phase with Cm space group coexisting with tetragonal phase can appear. It is suggested that tensile stress plays a role in shifting the morphotropic phase boundary to titanium-rich region in PZT thin films. The deteriorated ferroelectric properties of PZT thin films can be attributed mainly to the presence of thin non-ferroelectric layer and large tensile stress.  相似文献   

6.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

7.
We deposited a thin epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) layer on the (0 0 1) SrTiO3 (STO) substrate doped with Nb (0.5 wt.%), then grew composite thin film of CoFe2O4 (CFO) and PZT phases on it. X-ray diffraction and high resolution transmission electron microscopy showed that the PZT and CFO phases in the film had perfect epitaxial structures. CFO nanoparticles were embedded in PZT matrix randomly, which was useful to enhance the insulativity of the composite film. The composite thin film exhibited good ferromagnetic and ferroelectric properties. The dielectric constants of the composite thin film kept unchangeable in a wide bias electric field, but increased in a magnetic field, namely, magnetodielectric effect. The possible reasons for the magnetodielectric effect were discussed.  相似文献   

8.
Multiferroic epitaxial films, include SrRuO3/Pb(Zr0.95Ti0.05)O3/CoFe2O4 has been successfully deposited on SrTiO3 substrate by pulsed-laser deposition technique. The results show that the prepared films exhibit a single phase. The Pb(Zr0.95Ti0.05)O3 (PZT) film was highly textured with (1 0 0) orientation and gives good ferroelectric properties with saturated polarization of 15 μC/cm2. The magnetic coercivity of CoFe2O4 film on Pb(Zr0.95Ti0.05)O3 has been dampened to 0.9 kOe. The anisotropic magnetically behavior of CoFe2O4 film was changed to isotropic by using high Zr concentrated PZT as underneath layer. Heterostructure films show a good ferromagnetic and ferroelectric coupling that lead to the large magnetoelectricity of 287 mV/cm Oe.  相似文献   

9.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

10.
Lead germanate-silicate (Pb5Ge2.85Si0.15O11) ferroelectric thin films were successfully fabricated on Pt/Ti/SiO2/(100)Si substrates by the sol-gel process. The thin films were fabricated by multi-coating at preheating temperatures of 350 and 450 °C. After annealing the thin films at 600 °C, the films exhibited c-axis preferred orientation. The degree of c-axis preferred orientation of the thin films preheated at 350 °C was higher than that of films preheated at 450 °C. Grain growth was influenced by the annealing time. The thin films exhibited a well-saturated ferroelectric P-E hysteresis loop when preheated at 350 °C and annealed at 600 °C for 1.5 h. The values of the remanent polarization (Pr) and the coercive field (Ec) were approximately 2.1 μC/cm2 and 100 kV/cm, respectively.  相似文献   

11.
Ferroelectric Ba(Sn0.15Ti0.85)O3 (BTS) thin films were deposited on LaNiO3-coated silicon substrates via a sol-gel process. Films showed a strong (1 0 0) preferred orientation depending upon annealing temperature and concentration of the precursor solution. The dependence of dielectric and ferroelectric properties on film orientation has been studied. The leakage current density of thin films at 100 kV/cm was 7 × 10−7 A/cm2 and 5 × 10−5 A/cm2 and their capacitor tunability was 54 and 25% at an applied field of 200 kV/cm (measurement frequency of 1 MHz) for the thin films deposited with 0.1 and 0.4 M spin-on solution, respectively. This work clearly reveals the highly promising potential of BTS compared with BST films for application in tunable microwave devices.  相似文献   

12.
T.J. Zhu  X.B. Zhao 《Thin solid films》2006,515(4):1445-1449
Ferroelectric/shape memory alloy thin film multilayered heterostructures possess both sensing and actuating functions and are considered to be smart. In this article, Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectric thin films and Ti-riched TiNi shape memory alloy thin films have been deposited on Si and SiO2/Si substrates in the 400-600 °C temperature range by pulsed laser deposition technique. Deposition processing, microstructure and surface morphology of these films are described. The TiNi films deposited at 500 °C had an austenitic B2 structure with preferred (110) orientation. The surfaces of the films were very smooth with the root-mean-square roughness on a unit cell level. The structure of the TiNi films had a significant influence on that of the subsequently deposited PZT films. The single B2 austenite phase of the TiNi favored the growth of perovskite PZT films. The PZT/TiNi heterostructures with the PZT and TiNi films respectively deposited at 600 and 500 °C exhibited a polarization-electric field hysteresis behavior with a leakage current of about 2 × 10− 6 A/cm2.  相似文献   

13.
H.Z. Chen  M.C. Kao  C.M. Lee 《Thin solid films》2009,517(17):4818-665
Praseodymium-substituted bismuth titanate (Bi3.2Pr0.8Ti3O12, BPTO) thin films were successfully deposited on Pt(111)/Ti/SiO2/Si(100) substrates by spin coating with a sol-gel technology and rapid thermal annealing. The effects of annealing atmospheres (vacuum, ambient atmosphere and oxygen) on the growth and properties of thin films were investigated. The results show that the intensity of the (117) diffraction peak of Bi3.2Pr0.8Ti3O12 film annealed in oxygen is stronger than those annealed in ambient atmosphere and vacuum. The XRD spectra demonstrated that a highly (117) orientation could be obtained when the Bi3.2Pr0.8Ti3O12 thin film was annealed in an oxygen-sufficient environment. The BPTO thin films annealed in oxygen atmosphere exhibits the maximum remanent polarization (2Pr) of 49 μC/cm2 and a low coercive field (2Ec) of 130 kV/cm, fatigue free characteristics up to ≧ 1011 switching cycles. These results indicate that the BPTO thin film is useful in nonvolatile ferroelectric random access memory applications.  相似文献   

14.
PbZr0.52Ti0.48O3 films (PZT) have been grown epitaxially on SrRuO3/LaAlO3 (SRO/LAO) substrates using pulse laser deposition. In order to improve the ferroelectric properties of the PZT, one LAO buffer was introduced into the interface of PZT/SRO. The dependence of the electrical properties of the PZT films on the buffer thickness was studied. When a 10-nm-thick buffer was used, the remnant polarization (Pr) of the PZT film reached 58 ± 5 μC/cm2, 2 times larger than the sample without any buffer layer. The leakage current was reduced 1-2 orders of magnitude. Besides, the PZT film with 10-nm-thick LAO buffer also exhibited good fatigue endurance after 109 switching cycles. These results could propose one effective way to improve the properties of ferroelectric films deposited on oxide electrodes.  相似文献   

15.
Lead titanate thin films were deposited by atomic layer deposition on Si(100) using Ph4Pb and Ti(O-i-Pr)4 as metal precursors and O3 and H2O as oxygen sources. The influence of the Ti : Pb precursor pulsing ratio on the film growth, stoichiometry and quality was studied at two different temperatures, i.e. 250 and 300 °C. Uniform and stoichiometric films were obtained using a Ti : Pb precursor pulsing ratio of 1 : 10 at 250 °C or 1 : 28 at 300 °C. The as-deposited films were amorphous but the crystalline PbTiO3 phase was obtained by rapid thermal annealing at 600-900 °C both in N2 and O2 ambient. Thin PbTiO3 films were visually uniform and roughness values for as-deposited and annealed films were observed by atomic force microscopy.  相似文献   

16.
Considering practical applications in electronic devices, we studied the growth of In2O3 thin films on amorphous glasses by magnetron sputtering at room temperature and annealing effect on the structural and electrical properties. The vacuum annealed In2O3 thin films display a grain size enlargement and preferential orientation. Electrical characterization shows that the vacuum annealed In2O3 thin films exhibit a significant enhancement of both electron density and mobility, while air ambient annealing leads to a remarkable drop. The mechanism of the electrical characteristic changes in In2O3 thin films by annealing is explored by using different scattering mechanisms. Finally, a thin film transistor device using vacuum annealed In2O3 nano-meter thin films as active channel material is demonstrated.  相似文献   

17.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

18.
Bi3.4Dy0.6Ti3O12 (BDT) ferroelectric thin films were deposited on Pt/Ti/SiO2/Si substrates by chemical solution deposition (CSD) and annealed in an N2 environment after pre-annealing in air at 400 °C. The effect of crystallization temperature on the structural and electrical properties of the BDT films was studied. The BDT films annealed in N2 in the temperature range of 600 °C to 750 °C were crystallized well and the average grain size increased with increasing crystallization temperature, while the remanent polarization of the films is not a monotonic function of the crystallization temperature. The BDT films crystallized at 650 °C have the largest remanent polarization value of 2P= 39.4 μC/cm2, and a fatigue-free characteristic.  相似文献   

19.
In order to fabricate good quality ferroelectric thin films, PbZrxTi(1-x)O3 (PZT) and SrBi2Ta2O9 (SBT) films were fabricated on SiO2/Si(100) substrates and on Pt/Ti/ SiO2/Si(100) substrates by pulsed laser excimer deposition (PLD). X-ray diffraction, Rutherford backscattering analysis, and atomic force microscopy were used to characterize the structural properties of the samples, which were post-annealed at different temperatures. The results showed that the PZT and SBT films fabricated on Pt/Ti/SiO2/Si(100) substrates and annealed at 700 °C exhibited optimum properties.  相似文献   

20.
Bi2VO5.5 ferroelectric thin films were fabricated on LaNiO3/Si(100) substrate via chemical solution deposition. Ferroelectric and dielectric properties of the thin films annealed at 500-700 °C were studied. The thin film annealed at 700 °C exhibited more favorable ferroelectric and dielectric properties than those annealed at lower temperatures. The values of remnant polarization 2Pr and coercive field Ec for the film annealed at 700 °C are 10.62 µC/cm2 and 106.3 kV/cm, respectively. The leakage current of the film is about 1.92 × 10− 8 A/cm2 at 6 V. The possible mechanism of the dependence of electrical properties of the films on the annealing temperature was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号