首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
对新型镍基粉末高温合金FGH98Ⅰ分别进行过固溶和过固溶+亚固溶后处理,利用场发射扫描电镜和显微硬度仪研究了冷却速度对合金γ′相析出和显微硬度的影响。结果表明:随着固溶冷却速度增加,合金中二次和三次γ′相的尺寸减小,二次γ′相形状从蝶形向球形转变,γ′相的形状因子和颗粒密度增大,面积分数和晶界表观宽度减小。在冷却速度≤1.4℃/s时,冷却γ′相分两阶段形核;冷速越快,合金的硬度越高,时效后硬度增高越多;过固溶处理后的亚固溶处理使冷却γ′相粗化和方形化,形状因子减小,晶界γ′相析出密集区消失,硬度降低。另外,还建立了冷速与γ′相平均尺寸和合金硬度之间的函数关系式。该结果为FGH98Ⅰ合金实际双性能盘固溶热处理工艺的选择提供了理论参考。  相似文献   

2.
采用OM、SEM、DSC和硬度计等方法研究了在1080 ℃下不同固溶时间及冷却方式对新型镍基高温合金中γ′相和硬度值的影响。结果表明,在空冷和水冷条件下,试验合金中的γ′相尺寸均随着固溶时间的延长而减小;同一固溶时间下,相较于水冷试样,空冷试样中的γ′相尺寸更大,硬度值也更高。这是因为在水冷条件下,冷速较高,过冷度大,降低了基体中原子的扩散速率,减缓了γ′相的长大,使其最终尺寸较小。因此,固溶时间应小于16 h,冷却方式宜选择空冷,此时该合金中的γ′相分布均匀,尺寸大于20 nm,合金硬度值高于425 HV0.2。  相似文献   

3.
镍基高温合金锻后固溶处理的研究   总被引:1,自引:0,他引:1  
探讨了固溶温度对GH150镍基高温合金显微组织和力学性能的影响。研究结果证明,提高固溶温度可以促进γ′,得到充分溶解,进而提高高温合金时效处理时的沉淀强化效果。但当固溶温度超过1080℃以后。性能有所下降,主要是因为合金原子的扩散能力增强和晶界碳化物不断的溶解,从而导致晶粒过分长大。同时说明,1080℃应该是γ′的完全固溶的温度。  相似文献   

4.
采用光镜、扫描电镜对1种镍基单晶高温合金的铸态组织和不同温度固溶处理后的组织进行了观察,研究了不同温度固溶处理对γ′相尺寸、γ/γ′共晶、成分偏析的影响。结果表明:合金枝晶间γ′相的固溶温度高于枝晶干γ′相的固溶温度,随固溶处理温度的升高,γ′相尺寸略有增加,γ/γ′共晶量及成分偏析降低;1290℃,4h,AC固溶处理后合金枝晶干、间γ′相全部固溶,1310℃,4h,AC固溶处理后合金中γ/γ′共晶全部消除,1320℃固溶处理时,合金中出现初溶现象;确定1310℃,4h,AC为合金的固溶处理工艺。  相似文献   

5.
对新型镍基粉末高温合金(FGH98Ⅰ)在不同温度下进行固溶热处理,采用热力学相计算、光学显微镜、场发射扫描电镜及化学相分析等研究了亚固溶和过固溶合金的析出相和显微组织,并综合分析了组织与性能的关系。结果表明:FGH98Ⅰ合金经1130℃亚固溶和1190℃过固溶处理后的析出相均为γ’、MC、M23C6和M3B2等,未发现TCP(拓扑密堆)相。FGH98Ⅰ合金亚固溶热处理后晶粒稍有长大,存在尺寸不同的初次、二次和三次γ′相;过固溶热处理合金的晶粒明显长大,存在单模分布的二次γ′相;前者由于晶粒较小使强度更高,后者因减小二次γ′相尺寸和消除初次γ′相,PPB(原始颗粒边界)和残余枝晶,提高了合金的高温塑性和持久性能,说明不同晶粒尺寸和γ′相特征是FGH98Ⅰ盘件获得双性能的关键因素。  相似文献   

6.
采用热力学相计算、光学显微镜和场发射扫描电镜等实验方法研究了镍基粉末高温合金进行亚固溶热处理对合金双重晶粒组织的影响。结果表明:合金热处理过程中固溶温度和时间是控制合金晶粒尺寸的重要因素。合金中γ'相的固溶温度为1160℃。锻态合金在固溶热处理前先进行亚固溶热处理,可使锻态组织的晶粒尺寸均匀化,有利于固溶热处理控制晶粒尺寸,得到合适的晶粒度;在合金固溶热处理后再进行亚固溶热处理,晶粒尺寸发生适度的粗化和长大,有利于调整固溶热处理后的晶粒尺寸以改善合金力学性能。  相似文献   

7.
采用OM、SEM和拉伸试验等研究了固溶温度和固溶时间对新型镍钴基高温合金组织及力学性能的影响。结果表明,晶粒尺寸变化与一次γ′相含量变化一致,固溶温度低于1110℃时,随着固溶温度升高或固溶时间延长,残留的一次γ′相钉扎晶界,晶粒尺寸增加较缓。固溶温度为1110℃时,延长固溶时间至4 h时,一次γ′相基本回溶,晶粒尺寸迅速增加,进一步延长固溶时间至6 h时,晶粒尺寸增加减缓,即合金中一次γ′相的全溶温度为1110℃。合金在1100℃固溶4 h和双级时效处理(670℃×24 h,空冷+780℃×16 h,空冷)后的抗拉强度和屈服强度达到最大值,分别为1584 MPa和1104 MPa。因此,合金的固溶温度宜选取为1100℃,固溶时间宜选取为4 h。  相似文献   

8.
本工作研究了复合亚固溶热处理工艺对一种新型镍基粉末高温合金FGH4113A(WZ-A3)γ"相组织的影响规律。大尺寸锻造态涡轮盘件锻后冷速较低,γ"相的尺寸在约100nm至4500nm之间分布。在盘件上取小试样进行热处理实验,试样升温至1000℃和1050℃时,γ"相总占比下降,Oswald熟化机制及PAM机制同时存在。试样升温至1100℃时,晶内γ"相完全回溶。使用复合亚固溶热处理工艺,先将试样升温至1120℃度保温2h,快速冷却后再分别升温至1000℃、1050℃和1100℃时,γ"相总占比均下降,晶内γ"相演变以Oswald熟化机制为主导,其形貌及尺寸在升温过程中相对稳定。在盘件上取性能试棒分别进行锻造态+1000℃(不保温)+时效热处理和锻造态+1120℃(2h),80℃/min+1000℃空冷+时效热处理后进行550℃拉伸测试,后者的屈服强度和抗拉强度显著高于前者,可为大尺寸涡轮盘件的双性能热处理工艺的制定提供参考。  相似文献   

9.
研究了不同固溶处理工艺对800H合金组织和硬度的影响。结果表明,不同固溶处理温度对800H合金晶粒尺寸有很大影响;1050~1200℃固溶处理时,晶粒正常长大,晶粒长大激活能Q=309.3 kJ/mol;1050~1100℃固溶处理后,晶内仍有大量未固溶的富铬碳化物;1150℃固溶后,晶内富铬碳化物基本溶解;在1200℃固溶处理时,随着保温时间的延长,晶粒正常长大;晶粒尺寸与硬度符合Hall-Petch关系。  相似文献   

10.
随着镍基高温合金服役温度的不断提高,难溶元素含量的增多使合金固溶处理难度进一步增加。为了能更有效地制定出最佳的热处理制度,将固溶处理对镍基高温合金凝固组织、元素偏析以及力学性能的影响进行综合分析。结果表明,均匀化处理可以提高合金的初熔温度。适当提高固溶温度,延长固溶时间,增加固溶处理步骤可以显著减少合金元素的偏析,降低γ/γ′共晶组织、TCP相的体积分数,使碳化物转变为更稳定的类型,残余γ′相体积分数有所降低。但不同的固溶处理工艺对不同合金析出的γ′相尺寸、体积分数的影响仍存有差异,需对不同合金分别进行研究。新提出的斜坡固溶处理与重熔固溶处理均是保证在没有初熔组织存在的条件下,尽量提升固溶处理温度,使元素分布更均匀,并获得比传统逐步固溶处理更小的残余偏析,持久寿命明显增加。最后综述了固溶处理对合金微观组织及力学性能的影响机理,并指出今后的研究方向。  相似文献   

11.
新型镍基粉末高温合金的热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对新型镍基粉末高温合金FGH98Ⅰ进行了单向热压缩变形试验,研究了其在变形温度为950~1150℃,应变速率为0.0003~1s-1条件下的热变形行为,建立和对比了不同应变量下的应变速率敏感因子m图和功率耗散效率因子η图,并对热加工图进行了组织验证。结果表明:合金的流变应力随着变形温度的升高和应变速率的降低而降低;不同应变量下的η图与m图相似,随着应变量的增大,峰区的η与m值逐渐升高;当真应变为0.5时,在变形温度为1050℃,应变速率为0.0003s-1条件下,η与m达到峰值,分别为40%和25%,合金发生了动态再结晶,晶粒细化且无内裂纹。该结果为FGH98Ⅰ合金实际热加工工艺的优化提供了理论依据。  相似文献   

12.
研究了P/MFGH95合金在1120℃固溶后以不同冷却速度(12,23,56℃/s)冷却,以及在1160℃固溶后缓冷(4℃/min)到1120℃二次固溶后以12℃/s冷却的显微组织、力学性能和裂纹扩展速度。实验结果表明,1120℃固溶后随冷却速度加快,650℃的屈服强度和持久寿命增加,裂纹扩展速率提高。在1160℃+1120℃二次固溶热处理后,因晶粒增大并产生部分弯曲晶界,650℃屈服强度只降低130MPa(约12%),而裂纹扩展速率降低10倍,持久寿命提高近两倍,并且消除了合金的缺口敏感性。  相似文献   

13.
对新型第3代粉末高温合金母合金、等离子体旋转电极法生产(PREP)粉末和热等静压态合金中的微量元素Hf,Zr和Ta的存在相进行了研究。结果表明:母合金中微量元素Hf,Zr和Ta主要以一次MC型碳化物存在,呈块状、条状和蝶状分布于枝晶间;原始粉末中碳化物大致可分为两类:一类为富Ti,Ta和Nb,另一类为含有Ta,Hf和Zr,两类碳化物均含有一定量非碳化物形成元素Co和Ni及弱碳化物形成元素Cr和Mo,以块状、粒状分布于枝晶间或胞晶间。另外,热等静压态分析表明,微量元素Hf,Ta和Zr主要以晶内和晶界MC型碳化物存在,说明微量元素Hf,Zr和Ta以MC型碳化物存在并具有一定遗传性的特点。与原始粉末相比,热等静压态γ′相和碳化物中的Ta量比较少。  相似文献   

14.
FGH95粉末冶金高温合金长期时效的组织稳定性   总被引:1,自引:0,他引:1  
利用扫描电镜和透射电镜观察了FGH95镍基粉末冶金高温合金在650℃长期时效后的显微结构,评价了该合金在时效过程中的组织稳定性。结果表明,该合金在650℃具有较好的组织稳定性。经500~5000h时效后,合金的主要析出相为γ′相、MC型和M23C6型碳化物,在合金中没有发现TCP相。γ′相在不同热处理时期具有3种不同的尺寸及形貌:尺寸为1~3μm的γ′相,呈不规则块状在晶界析出;尺寸约为500nm的γ′相,呈蝶形均匀分布于基体中,随时效时间延长,其大小、形貌及在基体中的分布稍有变化;更小的γ′相在长期时效过程中经历不规则长大、分裂、再长大和再分裂的循环过程,尺寸在60~200nm范围内变化。合金时效3000h时发现晶界上生成M23C6型碳化物。  相似文献   

15.
新型镍基粉末高温合金动态再结晶的数学模型   总被引:1,自引:0,他引:1  
采用Gleeble 15 0 0热模拟试验机对新型镍基粉末高温合金在 10 70℃~ 1170℃ ,应变速率为 5× 10 - 4s- 1~2× 10 - 1s- 1的条件下进行了轴向压缩试验。通过加工硬化率和应变的关系曲线确定稳态应变εs,并绘制了该合金的动态再结晶图。结果表明 ,Zener Hollomon参数变化对动态再结晶的临界应变量影响较小 ,对稳态应变量影响较大 ,并建立了该合金的动态再结晶动力学模型和晶粒尺寸模型  相似文献   

16.
粉末高温合金因合金化程度高、可锻性差,在锻造加工过程中容易发生不均匀变形和开裂.利用OM、SEM和TEM分析粉末高温合金易产生不均匀变形的组织原因,初步探索了退火处理对改善组织,提高可锻性的原因.结果表明:由于晶粒转动和第二相不均匀分布引起的微观不均匀变形是导致宏观不均匀变形的直接原因;经锻前多台阶热处理后,三晶粒交界处生成细小等轴晶层,第二相弥散分布均有利于粉末高温合金变形.  相似文献   

17.
综合分析了国外第3代粉末高温合金的化学成分、显微组织和点阵常数,总结出新型涡轮盘用高性能粉末高温合金的研发趋势,重点介绍了作者课题组与钢铁研究总院合作在国内率先进行我国新型第3代高性能粉末高温合金的初期研究工作与成果,并提出了研制高性能粉末高温合金的重点研究方向。  相似文献   

18.
采用Gleeble-1500热模拟机研究了某新型粉末合金在变形温度为1070~1170℃、应变速率为5×10-4s-1~2×10-1s-1的热压缩塑性变形行为,分析了合金流变应力、应变速率、变形温度之间的关系。结果表明,该合金的真应力-应变曲线在高应变速率下(ε≥2×10-2s-1),呈现出典型的动态再结晶特征,低应变速率下(ε≤2×10-3s-1),呈现动态回复特征;热塑性变形流变行为可用包含Arrhenius项的Z参数描述;随着变形温度的提高,该合金的应变速率敏感指数值变化很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号