首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved method for the sol-gel synthesis of binary (TiO2)0.5(P2O5)0.5 glasses has been developed. Elemental analysis of the products showed that the loss of phosphorous upon drying and heat treatment is low. The structure of the heat-treated glasses was studied using neutron diffraction and high-energy X-ray diffraction, analysis of which revealed a structure consisting of PO4 tetrahedra and TiO6 octahedra sharing corners in a three-dimensional amorphous network. The Reverse Monte Carlo method was used to produce a structural model which illustrated that the structure of the glass is, at the near-neighbour level, closely analogous to the superstructure of crystalline TiP2O7. No significant atomic-scale structural differences were observed between glasses prepared by acid- or base-catalysed sol-gel reactions.  相似文献   

2.
Binary TiO2-P2O5 glasses with 69 mol% and 76 mol% TiO2 were prepared and converted into glass ceramics by heat-treatments. XRD measurements show that the main crystalline phases precipitated in the glass ceramics are anatase-type TiO2 crystals or (TiO)2P2O7 crystals, depending on the concentration of titanium constituent. Photocatalytic activities of the glass ceramics were evaluated by the decomposition of methylene blue (MB) and measuring the water contact angle. It is found that the glass ceramics containing anatase crystals exhibit both photocatalytic oxidation activity and highly photo-induced hydrophilicity under UV irradiation with intensity of 1.0 mW/cm2.  相似文献   

3.
In this study, TiO2 nanocomposite films with 10 g/L of TiO2 and copper loaded TiO2 nanoparticles as nanofillers were deposited on the glass substrates using the sol gel dip-coating method. FE-SEM and UV-vis spectrophotometer were used to evaluate morphological and optical properties of copper loaded titania nanoparticles. In addition, XPS and water contact angle techniques were used to study the surface properties and superhydrophilicity of titania nanocomposite films, respectively. The results indicated that copper loaded TiO2 nanoparticles had a significant effect on the hydrophilicity of nanocomposite film and maintaining it in a dark place for a long time (6.2 degree for titania nanocomposite films with copper loaded nanoparticle and 23.7 degree for nanocomposite film with titania nanoparticles).  相似文献   

4.
M2Y8(SiO4)6O2: Tb3+ (M = Ca, Sr) phosphors have been synthesized with a new silicon source silane crosslinking reagent (N-2-aminoethylic-3-aminopropyldiethoxysilane [NH2(CH2)2NH(CH2)3SiCH3(OCH3)2], abbreviated as AEAPMMS) through the sol-gel process, both of which present the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb3+ ions. It is interesting to be found that the high energy level blue emission (5D3 → 7FJ (J = 6, 5, 4, 3) transition) still can be found in the emission spectrum of Ca2Y8(SiO4)6O2: Tb3+ while it disappears in the emission spectrum of Sr2Y8(SiO4)6O2: Tb3+ for the cross-relaxation-induced quenching.  相似文献   

5.
The optical gap (Eg) between 4.54 eV-4.88 eV at room temperature was determined for PbO-ZnO-P2O5 glasses with the formal content of P2O5 in the region of 30 to 50 mol% and with the formal content of PbO in the region of 50 to 45 mol%, respectively. The temperature (T) dependence of the optical gap (Eg(T)) in the region 80 < T[K] < 600 was determined, and an electron-phonon interaction is suggested to be a major contribution to the temperature shift of the optical gap. In the temperature region of 300-600 K, the Eg(T) dependence can be approximated by a simple linear relation with the temperature coefficient (γ) of the optical gap in the region 6.04 ≤ γ × 104 [eV/K] ≤ 7.39.  相似文献   

6.
Pb2Fe2O5 (PFO) powders in monoclinic structure have been synthesized using lead acetate in glycerin and ferric acetylacetonate as the precursor. The powders were pressed into pellets, which were sintered into ceramics at 800 °C for 1 h. The morphology and structure have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Polarization was observed in Pb2Fe2O5 ceramics at room temperature, exhibiting a clear ferroelectric hysteresis loop. The remanent polarization of Pb2Fe2O5 ceramic is estimated to be Pr ∼ 0.22 μC/cm2. The origin of the polarization may be attributed to the off-centers of shifted Pb2+ ions as well as the FeO6 octahedra in the perovskite-based structure of Pb2Fe2O5. Magnetic hysteresis loop was also observed at room temperature. The Pb2Fe2O5 ceramic shows coexistence of ferroelectricity and ferromagnetism. It provides a new field of research for complex oxides with multiferroic properties.  相似文献   

7.
The third-order nonlinear optical properties of Bi2S3 nanocrystals doped in sodium borosilicate glass are measured by Z-scan technique. The microstructures of the glass are characterized by means of X-ray diffraction, transmission electron microscopy, scanning transmission electron microscopy, energy dispersion X-ray spectra, and high-resolution transmission electron microscopy. The results show that the Bi2S3 nanocrystals ranging from 10 to 30 nm are determined to be of the orthorhombic crystalline phase, and the third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ(3) of the glass are determined to be 2.56 × 10−16 m2 W−1, 4.13 × 10−10 mW−1, and 1.43 × 10−10 esu, respectively.  相似文献   

8.
2-6 mol% ZrO2 was added to a base glass composition of P2O5 31.25, CaO 43.75, TiO2 25 (mol%) at the expense of TiO2. The prepared glasses were crystallized to bulk glass ceramics containing the major phases of β-Ca3(PO4)2 and CaTi4(PO4)6. DTA was utilized to determine the appropriate phase separation-nucleation and crystallization temperatures. The crystalline products and resulting microstructures were examined by XRD and SEM. The β-Ca3(PO4)2 phase was dissolved out by leaching the resulting glass ceramics in HCl, leaving a porous skeleton of CaTi4(PO4)6. It was shown that ZrO2 addition resulted in reduction of volume porosity and mean pore diameter while the specific surface area was increased. The smallest median pore diameter and largest surface area were 8.6 nm and 32 m2 g−1 respectively obtained for the specimen containing 6 mol% ZrO2. The ZrO2 addition also improved the chemical durability and bending strength of porous glass ceramics.  相似文献   

9.
Bi3.25La0.75Ti3O12(BiLT) thin films with different thickness were successfully deposited onto fused quartz by chemical solution deposition. X-ray diffraction analysis shows that BiLT thin films are polycrystalline with (0 0 2)-preferred orientation. The dispersion of refractive indices of the BiLT thin films was investigated by the optical transmittance spectrum. The optical band gap energy was estimated from the graph of (hνα)2 versus . The results show that the refractive index and band-gap energy of the BiLT thin films decrease with the films thickness.  相似文献   

10.
Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with thickness of 500 nm were successfully deposited on TiO2 buffered Pt(1 1 1)/Ti/SiO2/Si(1 0 0) and Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates via sol-gel process. Microstructure of Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was studied by X-ray diffraction analyses. The antiferroelectric nature of the Pb0.97La0.02(Zr0.95Ti0.05)O3 thin films was confirmed by the double hysteresis behaviors of polarization and double buffer fly response of dielectric constant versus applied voltage at room temperature. The capacitance-voltage behaviors of the Pb0.97La0.02(Zr0.95Ti0.05)O3 films with and without TiO2 buffer layer were studied, as a function of temperature. The temperature dependence of dielectric constant displayed a similar behavior and the Curie temperature (Tc) was 193 °C for films on both substrates. The current caused by the polarization and depolarization of polar in the Pb0.97La0.02(Zr0.95Ti0.05)O3 films was detected by current density-electric field measurement.  相似文献   

11.
To obtain yttrium-gallium garnet (Y3Ga5O12, YGG) a simple “chimie douce” method has been developed. This sol-gel method yielded excellent starting gel precursor for the fabrication of YGG phase, which could be used as host material for optical applications. The pattern of X-ray diffraction analysis of the ceramic sample sintered for 10 h at 1000 °C showed the formation of monophasic Y3Ga5O12 phase. The phase transformations, composition and micro-structural features in the gels and polycrystalline sample were studied by thermoanalytical methods (TGA/DTA), powder X-ray diffraction analysis (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The quality of the resulting products (homogeneity, crystallisation temperature, grain size, grain size distribution, etc.) is discussed.  相似文献   

12.
Using Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, Si(OC2H5)4, LiNO3 and Bi(NO3)3·5H2O as raw materials, CaO-MgO-SiO2 submicron powders were prepared at low temperature by sol-gel method. The crystallization temperature was decreased enormously by the introduction of Li-Bi liquid phase sintering aids into Ca-Mg-Si sol, and the powders with average particle sizes of 80-100 nm and 200-400 nm were obtained at the calcining temperature of 750 °C and 800 °C, respectively. The sintering characteristic and dielectric properties of powders calcined at 750 °C with different content of powders calcined at 800 °C were studied. When the content of powders calcined at 800 °C was 10 wt%, the dielectric ceramic sintered at 890 °C had compact structure, and possessed excellent microwave dielectric properties: ?r = 7.16, Q × f = 25630 GHz, τf = −69.26 ppm/°C.  相似文献   

13.
Bi2O3-B2O3-SiO2 ternary glasses embedded with Ag nanoparticles were prepared by introducing AgCl into the bismuthate glasses using conventional melt quenching method and characterized by several experimental techniques. Scanning electron microscopic studies indicated the formation of Ag contained nanoclusters which crack and become regular with increase of AgCl content in these composites. Optical absorption spectra of the nanocomposites showed the presence of absorption band of surface plasmon resonance (SPR) due to Ag nanoparticles at ∼600 nm. Z-scan measurement with femtosecond laser was used to investigate third-order optical nonlinearities of the nanocomposites. The results show that the nonlinear refraction γ was dramatically increased up to 30 times by the appearance of Ag nanoparticles when excited within its SPR region, while nonlinear absorption due to two-photon absorption exhibited opposite tendency or even saturated behavior. The calculation of figure of merit suggests that the Ag particle embedded Bi2O3-B2O3-SiO2 glass composites are promising candidates for optoelectronic devices.  相似文献   

14.
SiO2/Al2O3 composite microspheres with SiO2 core/Al2O3 shell structure and high surface area were prepared by depositing Al2O3 colloid particles on the surface of monodispersed microporous silica microspheres using a simple electrostatic attraction and heterogeneous nucleation strategy, and then calcined at 600 °C for 4 h. The prepared products were characterized with differential thermal analysis and thermogravimetric analysis (DTA/TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It was found that uniform alumina coating could be deposited on the surface of silica microspheres by adjusting the pH values of the reaction solution to an optimal pH value of about 6.0. The specific surface area and pore volume of the SiO2/Al2O3 composite microspheres calcined at 600 °C were 653 m2 g−1 and 0.34 ml g−1, respectively.  相似文献   

15.
Nanocrystalline LiMn2O4 powders have been synthesized by combustion process in a single step using a novel fuel, l-alanine. Thermogravimetric analysis and differential thermal analysis of the gel indicate a sharp combustion at a temperature as low as 149 °C. Quantitative phase analysis of X-ray diffraction data shows about 97% of phase purity in the as-synthesized powder, which on further calcination at 700 °C becomes single phase LiMn2O4. High Brunauer, Emmett, and Teller surface area values obtained for ash (53 m2/g) and calcined powder (23 m2/g) indicate the ultrafine nature of the powder. Average crystallite size is found to be ∼60-70 nm from X-ray diffraction analysis and transmission electron microscopy. Fourier transformed infra-red spectrum shows two strong bands at 615 and 511 cm−1 originating from asymmetrical stretching of MnO6 octahedra. A nominal composition of Li0.88 Mn2O4 is calculated from the inductive coupled plasma analysis. From UV-vis spectroscopy, an optical band gap of 1.43 eV is estimated which is assigned to a transition between t2g and eg bands of Mn 3d. Electrochemical charge-discharge profiles show typical LiMn2O4 behavior with a specific capacity of 76 mAh/g.  相似文献   

16.
The giant dielectric constant material CaCu3Ti4O12 (CCTO) has been synthesized by sol-gel method, for the first time, using nitrate and alkoxide precursor. The electrical properties of CCTO ceramics, showing an enormously large dielectric constant ? ∼ 60,000 (100 Hz at RT), were investigated in the temperature range from 298 to 358 K at 0, 5, 10, 20, and 40 V dc. The phases, microstructures, and impedance properties of final samples were characterized by X-ray diffraction, scanning electron microscopy, and precision impedance analyzer. The dielectric permittivity of CCTO synthesized by sol-gel method is at least three times of magnitude larger than that synthesized by other low-temperature method and solid-state reaction method. Furthermore, the results support the internal barrier layer capacitor (IBLC) model of Schottky barriers at grain boundaries between semiconducting grains.  相似文献   

17.
The glass-forming region in the pseudo-ternary CdSe-AgI-As2Se3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (Tg), crystallisation (Tx), and melting (Tm) temperatures are reported and used to calculate their ΔT = Tx − Tg and their Hruby, Hr = (Tx − Tg)/(Tm − Tx), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ298 was also studied. The terahertz transparency domain in the 50-600 cm−1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.  相似文献   

18.
Crack-free Bi2Ti2O7 thin films on silicon substrates were prepared using chemical solution decomposition technique, and then treated by rapid thermal annealing. The microstructure of the films was studied by scanning electron microscopy. The effects of different fabricating procedures and various annealing temperatures and times on the leakage current density were investigated. The results show that the leakage current density decreases with increasing annealing temperature, while increases with increasing annealing time. Annealing temperature has a much stronger effect on the insulating properties of Bi2Ti2O7 thin films than that of annealing time.  相似文献   

19.
In this paper, we prepared the ZnO nanoparticles by a simple hydrothermal method and fabricated the ZnO/SiO2 core/shell nanostructures through a sol-gel chemistry process successfully. The hollow SiO2 nanostructures were obtained by selective removal of the ZnO cores. The structure, morphology and composition of the products were determined by the techniques of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the ZnO nanoparticles were sphere-like shape with the average size of 60 nm and belonged to hexagonal wurtzite crystal structure. With the coating of SiO2, the vibration modes of Si-O-Si and Si-OH were found. Furthermore, the measurement results of optical properties showed that spectra of bare ZnO nanoparticles and ZnO/SiO2 core/shell nanocomposites exhibited similar emission features, including a blue emission peak and an orange emission band.  相似文献   

20.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号