首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new lead vanadium phosphate Pb1.5V2(PO4)3 was synthesized by solid state reaction and characterized by X-ray powder diffraction, electron microscopy, and magnetic susceptibility measurements. The crystal structure of Pb1.5V2(PO4)3 (a = 9.78182(8) Å, S.G. P213, Z = 4) was determined from X-ray powder diffraction data and belongs to the langbeinite-type structures. It is formed by corner-linked V3+O6 octahedra and tetrahedral phosphate groups resulting in a three-dimensional framework. The lead atoms are situated in the structure interstices and only partially occupy their positions. An electron microscopy study confirmed the structure solution. Magnetic susceptibility measurements revealed Curie-Weiss (CW) behavior for Pb1.5V2(PO4)3 at high temperature whereas at around 14 K an abrupt increase on the susceptibility was observed.  相似文献   

2.
Crystals of K2Hf2O5 and K4Hf5O12 were grown from molten potassium hydroxide flux. The crystal structures were determined by single-crystal X-ray diffraction. K2Hf2O5 crystallizes in the space group Pnna of the orthorhombic system, with unit cell dimensions of a = 5.780(1) Å, b = 10.640(2) Å, and c = 8.666(2) Å. This compound contains infinite chains of HfO6 octahedra that form a channel structure. K4Hf5O12 crystallizes in the space group of the trigonal system, with unit cell dimensions of a = 5.7877(2) Å and c = 10.3693(7) Å. This compound possesses a layered structure with six-coordinate Hf in three different coordination environments (trigonal prismatic, distorted octahedral, and regular octahedral).  相似文献   

3.
Single crystals of two niobates, KBa2Nb5O15 and LaK2Nb5O15, were synthesized by high-temperature reaction and the crystal structures were determined by single crystal X-ray diffraction data. Although the space groups for these compounds were different (the non-centrosymmetrical space group P4bm (#100) for KBa2Nb5O15 and the centrosymmetrical one P4/mbm (#127) for LaK2Nb5O15), both compounds had the same tetragonal tungsten bronze-type (hereafter TTB-type) structure. The lattice parameters and R-factors of KBa2Nb5O15 (LaK2Nb5O15) were a = 12.533(2) (12.563(2)) and c = 4.0074(9) (3.9179(9)) Å, and R1 = 0.040 (0.047) and wR2=0.131 (0.120), respectively. From the crystal structural analysis, it was clarified that distribution of two large cations was different from each other in the way that K and Ba atoms in KBa2Nb5O15 were distributed statistically at two crystallographic sites and K and La atoms in LaK2Nb5O15 were ordered.  相似文献   

4.
Synthesis of single-phase Sr3Co2Fe24O41 Z-type (Sr3Co2Z) ferrite was realized by adopting the polymerizable complex method. Crystal structure of samples has been investigated by powder X-ray diffraction (XRD). Single-phase Sr3Co2Z ferrite was obtained by heating at 1473 K for 5 h in air. Magnetic properties were discussed by measurements of M-H curves with vibrating sample magnetometer (VSM). Sr3Co2Z ferrite prepared by polymerizable complex method showed typical M-H curve of soft ferrite, with a saturation magnetization of 21.5μB/formula unit (50.5 emu/g) and a coercive force of 0.014 T at room temperature.  相似文献   

5.
Single crystals of a new niobium oxide, Cs3Fe0.44Nb5.56O16 were prepared at 1200°C under an Ar atmosphere. This compound has the orthorhombic space group Pbcm and Z=4. The lattice parameters were a=10.470(3), b=7.514(4) and c=21.312(3) Å, and the final R-factors were R=0.027 and Rw=0.033 for 1085 unique reflections. The crystal structure is a three-dimensional tunnel structure built up by edge- and corner-sharing NbO6 octahedra and (Fe,Nb)O4 tetrahedra and cesium atoms are located in two types of tunnels. The Cs+ ion in the tunnels was ion-exchanged partially with Rb+ ion.  相似文献   

6.
7.
The crystal structures of two PbSb2O6-type compounds containing titanium, CdTi2O4(OH)2 and LaTiSbO6 were refined by X-ray powder diffraction data. For both compounds structure refinements with the space group were successful and the R-factors were RWP = 6.46% and RP = 4.90% for CdTi2O4(OH)2 and RWP = 9.55% and RP = 7.17% for LaTiSbO6. These crystal structures were the same as that of the typical PbSb2O6-type compound in spite of the existence of protons in the interlayer or two different metal ions in the layer.  相似文献   

8.
Two new diphosphate complexes containing potassium and palladium, K2PdP2O7 and K3.5Pd2.25(P2O7)2, have been synthesized and characterized by single crystal X-ray diffraction. K2PdP2O7 exists with layers formed of linked PdP2O7 polyhedra, between which are found the potassium ions. K3.5Pd2.25(P2O7)2 with a Pd/P2O7 ratio of 1.125:1 crystallizes with tunnels of various sizes in which are found the potassium ions. Conductivity measurements reveal the material to be conducting.  相似文献   

9.
Measurements of magnetic and dielectric properties of single crystalline ErMnO3 establish the Néel and ferroelectric transition temperatures to be 77 K and 588 K respectively. The dielectric constant of ErMnO3 shows an anomalous jump at TN. At higher temperatures, the dielectric constant undergoes a significant decrease on application of magnetic fields. The study clearly exhibits multiferroic and magnetoelectric nature of ErMnO3.  相似文献   

10.
A new lithium cobalt metaphosphate, LiCo(PO3)3, is reported for the first time, which was discovered during the exploratory synthesis in Li-Co-P-O system by solid state reaction. The structure has been refined by powder X-ray Rietveld refinement method (P212121, a = 8.5398(2) Å, b = 8.6326(2) Å and c = 8.3520(2) Å, Z = 4, Rp = 13.6%, Rwp = 19.4%, Rexp = 17.7%, S = 1.11, χ2 = 1.23). It is isostructural with LiM(PO3)3 (M = Fe, Cu). It contains (PO3)1− chains with the Co atoms localized in the octahedral sites, bridging four neighboring chains. The magnetic susceptibility measurement showed a typical paramagnetic behavior of high spin of Co2+, following the Curie-Weiss law in the temperature range of 5-300 K. Unlike the olivine type lithium cobalt phosphate, LiCoPO4, cyclic voltammetry of LiCo(PO3)3 assembled in the coin-type cell showed no electrochemical activity in the voltage region of 1-5 V versus Li/Li+.  相似文献   

11.
Undoped and doped either by Eu3+ or Tb3+ bismuth borate Ba3BiB9O18 was structurally characterized and analyzed by fluorescence spectroscopy. Belonging to synthetic borate member of the family Ba3XB9O18, layers of planar triangular B3O6 groups connecting with deformed BaO6 hexagons are interleaved by 9-coordinate Ba atoms, and 6-coordinate Bi atoms. Its crystal structure was determined and refined from powder X-ray diffraction data by the Rietveld method and the results showed that Ba3BiB9O18 belongs to space group P63/m with unit cell dimensions of a = 7.1999(2) Å, c = 17.3567(6) Å, and z = 2. Curves of differential thermal analysis and thermogravimetric analysis showed that Ba3BiB9O18 is a congruent melting compound and chemically stable above 728 °C. Ba3Bi1−xEuxB9O18 and Ba3Bi1−xTbxB9O18 form a continuous solid solution from x = 0.01 to x = 0.9. The ultraviolet excited photoluminescence intensity increased with both Eu3+ and Tb3+ concentration in the matrix of Ba3BiB9O18. There may be an interesting correlation between spectroscopic properties and lattice structural features of doped Ba3BiB9O18.  相似文献   

12.
The structure of a newly synthesized AgTlTeO3 crystalline compound has been solved from single crystal X-ray diffraction data and refined to a final reliability factor R1 = 0.037. It was found having an orthorhombic Iba2 space group symmetry with unit cell parameters a = 14.708(7) Å, b = 10.745(6) Å, c = 5.166(3) Å, Z = 8. Its lattice is divided into separated AgTlTeO3 sheets parallel to [0 1 0] which are formed by TeO3 pyramids, TlO4 disphenoids and AgO6 octahedra sharing either corners or edges. At the same time, from the crystal chemistry point of view, it can be classified as a typical island-type compound made up from molecular-like [TeO3]2− ortho-anions weakly connected with Ag+ and Tl+ cations. The vibrational spectra and their interpretations complemented by the calculated elastic properties confirm this classification. The model-estimated piezoelectric constants allow characterizing AgTlTeO3 as a strong pyroelectric structure.  相似文献   

13.
The crystal and magnetic structures of LaCrO3 and La(Cr0.90Ti0.10)O3 have been investigated between 5 and 350 K by means of neutron powder diffraction and DC magnetic measurements. Both compounds are characterized by an antiferromagnetic Gx-type ordering at low temperature. Structural features suggest the occurrence of Ti in the tetra-valent state. Despite the mixed valence induced by Ti-substitution leading to the occurrence of the Jahn-Teller species Cr2+, no evidence for long range ferromagnetism can be detected. On account of a miscibility gap, a higher degree of Ti-substitution at the Cr site cannot be achieved; as a consequence the solid state solubility of Ti in LaCrO3 at 1573 K has been ascertained.  相似文献   

14.
Supercritical fluids are shown to be an excellent reaction media for the synthesis of novel solid state phases at intermediate temperatures. LiVGe2O6 and NaVGe2O6 have the common pyroxene structure composed of VO6 linear chains. NaVGe2O6 crystallizes in the monoclinic space group C2/c with four formula units having cell dimensions a = 9.960(4) Å, b = 8.853(10) Å, c = 5.4861(10) Å, β = 106.403(3)°. The structure was refined until R = 0.0290 and Rw = 0.0370. For LiVGe2O6 in space group P21/c: a = 9.8508(7) Å, b = 8.754(3) Å, c = 5.3948(13) Å, β = 108(3)°, R = 0.0240 and Rw = 0.0250. The compounds contain edge-shared VO6 octahedral chains and corner-shared GeO4 tetrahedral chains. The presence of these VO6 chains results in spin-Peierls distortion. Structural and physical characterization of the compounds are reported.  相似文献   

15.
Single crystals of a new bismuth vanadate, Bi3.33(VO4)2O2 was prepared by hydrothermal reaction using a hydrated sodium bismuthate, NaBiO3·nH2O as one of the starting compounds. The crystal structure was determined by using single crystal X-ray diffraction data. This compound crystallizes in the triclinic space group (#2) with a = 7.114(1), b = 7.844(2), c = 9.372(2) Å, α = 106.090(7), β = 94.468(7) and γ = 112.506(8)°, Z = 2 and the final R factors are R1 = 0.052 and wR2 = 0.14 for 2085 unique reflections. The crystal structure is composed by four bismuth atoms with the coordination number of 6 or 8 and two VO4 tetrahedra, and one of four bismuth atoms is statistically distributed in the splitting sites with the distance of 0.83 Å. This compound exhibited photocatalytic behavior for decomposition of phenol under visible light irradiation and its activity was less than that of monoclinic BiVO4.  相似文献   

16.
Nanosized γ-Fe2O3 is synthesized by the microwave-hydrothermal method. Powder X-ray diffraction and transmission electron microscopic studies showed that the average particle size is 10 nm. Magnetic studies reveal that the γ-Fe2O3 nanoparticles are superparamagnetic at room temperature, with a superparamagnetic blocking temperature of 200 K. The magnetic characteristics of the nanoparticles indicate their strongly interacting nature.  相似文献   

17.
A new iron phosphonate-oxalate [Fe(O3PCH3)(C2O4)0.5(H2O)] (1), has been synthesized under hydrothermal condition. The single-crystal X-ray diffraction studies reveal that 1 consists of layers of vertex-linked FeO6 octahedra and O3PC tetrahedra, which are further connected by bis-chelate oxalate bridges, giving to a 3D structure with 10-membered channels. Crystal data: monoclinic, P21/n (no. 14), a = 4.851(2) Å, b = 16.803(7) Å, c = 7.941(4) Å, β = 107.516(6)°, V = 617.2(5) Å3, Z = 4, R1 = 0.0337 and wR2=0.0874 for 1251 reflections [I > 2σ(I)]. Mössbauer spectroscopy measurement confirms the existence of high-spin Fe(III) in 1. Magnetic studies show that 1 exhibits weak ferromagnetism with TN = 30 K due to a weak spin canting.  相似文献   

18.
We have investigated the double perovskites Ca2MSbO6 (M = Mn, Fe) that have been prepared by solid-state reaction (M = Fe) and wet chemistry procedures (M = Mn). The crystal and magnetic structures have been studied from X-ray (XRD) and neutron powder diffraction (NPD) data. Rietveld refinements show that the crystal structures are orthorhombic (space group Pbnm) with complete disorder of M and Sb cations, so the formula should be rewritten as Ca(M0.5Sb0.5)O3. Due to this disorder no evidences of Jahn-Teller distortion can be observed in the MnO6 octahedra of Ca(Mn0.5Sb0.5)O3, in contrast with the ordered double perovskite Sr2MnSbO6. Ca(Fe0.5Sb0.5)O3 behaves as an antiferromagnet with an ordered magnetic moment for Fe3+ of 1.53(4)μB and a propagation vector k = 0, as investigated by low-temperature NPD. The antiferromagnetic ordering is a result of the high degree of Fe/Sb anti-site disorder of the sample, which originates the spontaneous formation of Fe-rich islands, characterized by the presence of strong Fe-O-Fe antiferromagnetic couplings with enough long-range coherence to produce a magnetic contribution perceptible by NPD. By contrast, the magnetic structure of Ca(Mn0.5Sb0.5)O3 cannot be observed by low-temperature NPD because the magnitude of the ordered magnetic moments is below the detection threshold for neutrons.  相似文献   

19.
Bi2Fe4O9 have been successfully prepared using ethylenediaminetetraacetic (EDTA) acid as a chelating agent and ethylene glycol as an esterification agent. Heating of a mixed solution of EDTA, ethylene glycol, and nitrates of iron and bismuth at 140 °C produced a transparent polymeric resin without any precipitation, which after pyrolysis at 250 °C was converted to a powder precursor for Bi2Fe4O9. The precursors were heated at 400–800 °C in air to obtain Bi2Fe4O9 powder and differential scanning calorimetry (DSC), thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques were used to characterize the precursors and the derived oxide powders. XRD analysis showed that well-crystallized and single-phase Bi2Fe4O9 with orthorhombic symmetry was obtained at 700 °C for 2 h and BiFeO3 and Fe2O3/FeCO3 were intermediate phases before the formation of Bi2Fe4O9. Bi2Fe4O9 powders show weak ferromagnetism at room temperature.  相似文献   

20.
A new yttrium borate compound K3Y3(BO3)4 has been obtained in the K2O-Y2O3-B2O3 ternary system. Its structure, determined from single crystal X-ray diffraction data, shows that it belongs to space group P21/c with unit cell dimensions of a = 10.4667(16) Å, b = 17.361(3) Å, c = 13.781(2) Å and β = 110.548(8)°. The structure consists sheets of [Y8B8O24] linked by out of sheet BO3 groups and Y ions to form a three-dimensional framework. The luminescent properties of Eu3+ and Tb3+ doped K3Y3(BO3)4 materials have also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号