首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A facile one-pot synthesis of ZnS hollow spheres has been carried out via a chemical transformation induced inside-out Ostwald ripening process from a single source precursor. The size and shell thickness of the ZnS hollow spheres can be controlled by adjusting the reaction temperature and reaction time, respectively. Photoluminescence spectra show a dominant emission peak at 470 nm accompanied by several weaker peaks. UV-vis measurement reveals that the obtained ZnS hollow spheres exhibit “hollow effect”. The formation process of ZnS hollow spheres has been discussed.  相似文献   

2.
In this study, we provide a strategy to prepare the hollow silver spheres by accumulating the silver nanoparticles on the surface of 3-mercaptopropyltrimethoxysilane (MPTMS)-functionalized silica as templates, which was accomplished by the chemisorption between silver nanoparticles and thiol groups. Then, the resulting hollow silver spheres were obtained through the chemical wet etching process with 10 M HF solution. In conventional method, the fabrication of hollow silver spheres from core-shell spheres was not easy due to the difficulties in retaining the shell structures during core removal. The method in this paper could overcome this limitation. The major focus of study is on understanding the mechanism of formation of the hollow silver spheres through the self-assembly behavior by chemisorption between silver nanoparticles and thiol groups. The silver-coated silica and hollow silver spheres were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and X-ray photoelectron spectroscopy (XPS).  相似文献   

3.
Polystyrene (core)-titania (shell) composite spheres consisting were readily prepared by a sol-gel process of titanium tetrabutoxide (TBOT) in a mixed solvent of ethanol/acetonitrile (3:1, v/v). Smooth and homogeneous titania coatings formed when the mixed solvent was dehydrated by anhydrous sodium sulfate. The thickness and surface roughness of titania coating increase with increase of the TBOT concentration. By adjusting the TBOT concentration in the range of 5.8-29.0 mM, the size of titania-coated PS spheres could be varied from 990 to 1125 nm. Calcination at elevated temperature gave dense, homogeneous, robust shells of anatase titania. The sizes of titania hollow spheres are 11.3-16.9% smaller than those of the titania-coated PS spheres as a result of calcination-induced shrinkage. The composite and hollow spheres were characterized by scanning electron microscopy, transmission electron microscopy and electron diffraction measurements. These core-shell organic-inorganic spheres and hollow ceramic spheres may have wide applications in catalysts, adsorbents, lightweight fillers, capsules, etc.  相似文献   

4.
In this study, KMgF3:Eu2+ luminescent nanocrystals (NCs) were prepared in water/cetyltrimethylammonium bromide (CTAB)/2-octanol microemulsions. The KMgF3:Eu2+ NCs were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), fluorescence spectrum, infrared spectroscopy (IR) and elementary analysis. The results showed that the size of the KMgF3:Eu2+ NCs was hardly affected by water content and surfactant (CTAB) concentration. The emission spectrum showed that the position of the 362 nm peak is due to the K+ sites substituted Eu2+. Two emission peaks located at 589 and 612 nm can be attributed to Eu3+, which exist at two different types of Eu3+ centers: one is Eu3+ at a K+ site, the other is clustering of Eu3+ ions in the interstices of KMgF3 host lattice.  相似文献   

5.
A facile method to fabricate submicrometer-sized hollow nickel spheres by autocatalyzing the redox reaction around a sacrificial colloidal particle surface is presented in this paper. The size distribution of these spheres can be controlled by regulating the concentration of the alkali solution. The hollow nickel particles were characterized by field emission scanning electron microscopy, transmission electron microscopy and X-ray powder diffraction. The hollow spheres produced by this process may have potential applications in many fields, including chemistry, biotechnology and materials science.  相似文献   

6.
A rare earth complex, Eu(AA)3Phen was successfully introduced into the pores of mesoporous silica, which was verified by X-ray photoelectron spectroscopy and nitrogen sorption isotherms. The rare earth complex dispersed in mesoporous silica displayed characteristic fluorescence emission of the pure rare earth complex, and the fluorescence emission was enhanced, especially for that with diamine treated mesoporous silica.  相似文献   

7.
LaPO4:Eu3+ nanoparticles (NP) and nanowires (NW) were prepared by hydrothermal method. Their Luminescent properties were studied and compared to those of the bulk powders. In particular, the thermal quenching characteristics for the luminescence of Eu3+ were studied. It was observed that the quenching rate in LaPO4:Eu NP is remarkably lower than in the bulk. This characteristic is helpful of searching for high-temperature phosphors.  相似文献   

8.
MgAl2O4:Mn2+ hexagonal nanoplates have been synthesized via a simple two-step method. The nanoplates have uniform hexagonal morphology with an average edge length of 1 μm and thickness of 30 nm. X-ray diffraction and various microscopic techniques indicate that MgAl2O4:Mn2+ nanoplates are single-crystal with multilayered morphology. The formation mechanism has also been discussed. Photoluminescence (PL) spectrum of the MgAl2O4:Mn2+ nanoplate shows a broad green emission band centered at 568 nm, which is assigned to the 4T1 → 6A1 transition of Mn2+ ion. The MgAl2O4:Mn2+ nanoplate is a promising candidate for efficient nanoscale optical material.  相似文献   

9.
The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 °C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out.  相似文献   

10.
Hollow hydroxyapatite (HA) microspheres were fabricated by a simple spray drying method in this study. Moreover, the dissolution behavior of these hollow HA microspheres after immersion in simulated body fluid (SBF) was also studied. The results indicated that the dissolution of the HA microspheres in SBF is not homogeneous in a layer-by-layer fashion but was preferential at different locations of the particle surface. Generically, dissolution preferentially occurs on the location with looser structure and high porosity of the microspheres. The degradable HA microspheres are expected to have potential applications in bone local drug delivery systems.  相似文献   

11.
The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V2O5 and BaCl2 at 200 °C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba3V2O8 with small amount of Ba3VO4.8 coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of ∼20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO4 tetrahedron with Td symmetry in Ba3V2O8. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 × 10−3 emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 × 10−3 emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S = 1/2.  相似文献   

12.
A facile Au-catalytic reactive evaporation method was developed to synthesize cubic zinc gallate (ZnGa2O4) nanowires through the reaction of Ga2O3 film and ZnO vapor at high temperature. The ZnGa2O4 nanowires are well crystalline and the length is up to tens of micrometers. The growth process follows typical vapor-liquid-solid (VLS) mechanism. All the cathodoluminescence (CL) spectra of individual nanowires reveal a strong, broad and asymmetric blue emission band centered at ca. 460 nm. It is thought that the excess Ga3+ is the main reason for the unusual blue emission properties.  相似文献   

13.
Iron oxide nanoparticles have been produced on the top surface of aligned multi-walled carbon nanotubes by CO2 laser processing. They were characterized to be Fe2O3 nanoparticles by X-ray photoelectron spectroscopy, X-ray diffraction and high resolution scanning electronic microscopy. Absorption bands in the visible region were found to be redshifted compared with the absorption of Fe2O3 nanoparticles prepared by traditional chemical methods. Photoluminescence from these Fe2O3 nanoparticles shows a broad emission band in the near infrared region for both excitations at 514 and 633 nm. Particle size is considered to be responsible for the unique optical properties of the Fe2O3 nanoparticles.  相似文献   

14.
《Materials Research Bulletin》2013,48(10):3756-3760
Hollow Ag spheres with tunable sizes in a range of 74–167 nm were fabricated using a two-step synthesis including the creation of solid Ag2O particles and the reduction of these Ag2O particles in situ. Ag nanoclusters were generated by the reduction of Ag2O. Ag2O particles were as scaffolds to create Ag spheres. Namely, the reduction of Ag2O occurred firstly on the surface of the Ag2O particles. The H2 was generated due to the hydrolysis of borohydride ions. The diffusion of H2 and the further reduction of Ag2O particles resulted in the formation of a hollow part within Ag spheres. The average diameter of the hollow Ag spheres can be adjusted by varying the concentration of NaOH and NaBH4, the kinds of solvent, and reaction temperature.  相似文献   

15.
We have synthesized BaS:Bi nanocrystalline powder of average grain size 35 nm by solid-state diffusion method using sodium thiosulphate as a flux. During this work we have optimized the nature and amount of flux, amount of the dopant and temperature of firing for maximum yield of photoluminescence. The samples were characterized by X-ray powder diffraction (XRD) method, transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible techniques. On excitation by 425 nm, these nanophosphors give one emission peak at 575 nm which corresponds to green color. In the excitation spectra of these particles there are two peaks at 350 nm and 425 nm. The effect of dopant concentration on the photoluminescence of BaS:Bi nanocrystallites has been studied which is in agreement with the principle of concentration quenching. The energy band gap of bismuth doped BaS nanopowder has been calculated to be 4.25 eV and is blue shifted in comparison to their bulk counterparts. The blue shift may be due to the quantum confinement in the particles.  相似文献   

16.
We report nano-Y2O3:Eu3+ phosphors with particle size of about 50 nm and relatively high photoluminescence (PL) intensity which is close to the standard for application. The influences of the dope amount, the surfactant and the precipitation pH on the PL intensity, the particle size and the dispersion have been studied. It has been found that 4% is the best Eu3+ molar concentration to get the highest PL intensity for both nano- and micro-Y2O3:Eu3+. The addition of butanol as a surfactant inhibits the grain growth and the agglomeration of particles efficiently by reducing the oxygen bridge bonds. As the pH rises, the PL intensity and the particle size increase due to the formation of oxygen bridge bonds.  相似文献   

17.
SrTiO3:Pr, Al phosphor particles with high luminescence intensities were directly prepared by flame spray pyrolysis without post-treatment. They had better crystallinity than those prepared by general spray pyrolysis with post-treatment and solid-state reaction methods. In addition, they had complete spherical shape and narrow size distribution. On the other hand, the particles prepared by general spray pyrolysis had irregular shape, and poorer brightness than those prepared by solid-state reaction method, while the particles prepared by flame spray pyrolysis had comparable photoluminescence and cathodoluminescence intensities with those of particles prepared by solid-state reaction method. The photoluminescence intensity of SrTiO3:Pr, Al particles prepared by flame spray pyrolysis was as much as 4.7 times higher than that of particles prepared by general spray pyrolysis.  相似文献   

18.
Simple, one-step synthesis of spherical-shaped powder phosphors with aqueous precursors via a spray pyrolysis method is reported. Green-emitting MgGa2O4:Mn2+ phosphor with a controlled shape was successfully obtained by spraying under a reductive atmosphere (N2 + H2 carrier gas) without high-temperature post-heat treatment. In addition, the corresponding powder phosphors were well dispersed and showed a clean surface morphology compared to an existing cumbersome process using high-temperature post-annealing. The new method may help to prevent surface residual non-radiative defect sites. The result of highly luminescent and spherical morphology, non-aggregated powder phosphor by this procedure holds promise for a cost-effective and rapid synthesis process for conventional inorganic phosphors.  相似文献   

19.
Ba1−ySryLa4−xTbx(WO4)7 (x = 0.02-1.2, y = 0-0.4) phosphors were prepared via a solid-state reaction and their photoluminescence properties were investigated. An analysis of the decay behavior indicates that the energy migration between Tb3+ ions is conspicuous in the 5D3 → 7F4 transition due to the cross-relaxation in BaLa4(WO4)7. A partial substitution of Ba2+ by Sr2+ can not only enhance the emission intensity but also increase the solid solubility of Tb3+ in Ba1−ySryLa4−xTbx(WO4)7. The emission intensity of the 5D4 → 7FJ (J = 4, 5, 6) transitions can be enhanced by increasing Sr2+ and Tb3+ concentrations, with the optimal conditions being x = 1.2, y = 0.4 (Ba0.6Sr0.4La2.8Tb1.2(WO4)7). Under near-UV excitation at 379 nm, the CIE color coordinates of Ba1−ySryLa4−xTbx(WO4)7 vary from blue (0.212, 0.181) at x = 0.04, y = 0, to green (0.245, 0.607) at x = 1.2, y = 0.4.  相似文献   

20.
We report here the successful synthesis of CaSiO3:Eu3+ spheres using the reverse micelles soft template. The influence of the calcination temperature on the shape, crystallization and photoluminescence properties of the prepared spheres was investigated by DTA-TG, XRD, IR, SEM and PL. The results showed that the temperature of crystallization (from amorphous phase to β-CaSiO3) is 668 °C. The temperature of phase transition (from β-CaSiO3 to α-CaSiO3) is 790 °C. The average size of CaSiO3:Eu3+ spheres calcined at 700 °C was about 350 nm. The radiation was dominated by the red emission peak at 613 nm and the highest emission intensity was observed when the spheres were calcined at 700 °C. When calcined at 800 °C, the spheres are almost cracked and melted down, due to the high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号