首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey–predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.  相似文献   

2.
Site-directed mutagenesis on human cytidine deaminase (CDA)was employed to mutate specifically two highly conserved phenylalanineresidues, F36 and F137, to tryptophan; at the same time, theunique tryptophan residue present in the sequence at position113 was mutated to phenylalanine. These double mutations wereperformed in order to have for each protein a single tryptophansignal for fluorescence studies relative to position 36 or 137.The mutant enzymes thus obtained, W113F, F36W/W113F and F137W/W113F,showed by circular dicroism and thermal stability an overallstructure not greatly affected by the mutations. The titrationof Trp residues by N-bromosuccinimide (NBS) suggested that residueW113 of the wild-type CDA and W36 of mutant F36W/W113F are buriedin the tertiary structure of the enzyme, whereas the residueW137 of mutant F137W/W113F is located near the surface of themolecule. Kinetic experiments and equilibrium experiments withFZEB showed that the residue W113 seems not to be part of theactive site of the enzyme whereas the Phe/Trp substitution inF36W/W113F and F137W/W113F mutant enzymes had a negative effecton substrate binding and catalysis, suggesting that F137 andF36 of the wild-type CDA are involved in a stabilizing interactionbetween ligand and enzyme.  相似文献   

3.
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin–hemolysin (CyaA, ACT, or AC-Hly) that catalyzes the conversion of intracellular ATP to cAMP and through its signaling annihilates the bactericidal activities of host sentinel phagocytes. In parallel, CyaA permeabilizes host cells by the formation of cation-selective membrane pores that account for the hemolytic activity of CyaA. The pore-forming activity contributes to the overall cytotoxic effect of CyaA in vitro, and it has previously been proposed to synergize with the cAMP-elevating activity in conferring full virulence on B. pertussis in the mouse model of pneumonic infection. CyaA primarily targets myeloid phagocytes through binding of their complement receptor 3 (CR3, integrin αMβ2, or CD11b/CD18). However, with a reduced efficacy, the toxin can promiscuously penetrate and permeabilize the cell membrane of a variety of non-myeloid cells that lack CR3 on the cell surface, including airway epithelial cells or erythrocytes, and detectably intoxicates them by cAMP. Here, we used CyaA variants with strongly and selectively enhanced or reduced pore-forming activity that, at the same time, exhibited a full capacity to elevate cAMP concentrations in both CR3-expressing and CR3-non-expressing target cells. Using B. pertussis mutants secreting such CyaA variants, we show that a selective enhancement of the cell-permeabilizing activity of CyaA does not increase the overall virulence and lethality of pneumonic B. pertussis infection of mice any further. In turn, a reduction of the cell-permeabilizing activity of CyaA did not reduce B. pertussis virulence any importantly. These results suggest that the phagocyte-paralyzing cAMP-elevating capacity of CyaA prevails over the cell-permeabilizing activity of CyaA that appears to play an auxiliary role in the biological activity of the CyaA toxin in the course of B. pertussis infections in vivo.  相似文献   

4.
Protein therapeutics suffer from low oral bioavailability, mainly due to poor membrane permeability and digestion by gastrointestinal proteases. To improve proteolytic stability, intramolecular thioether crosslinks were introduced into a three-helix affibody molecule binding the human epidermal growth factor receptor (EGFR). Solid-phase peptide synthesis was used to produce an unmodified control protein domain and three different crosslinked protein domain variants: one with a thioether crosslink between the N-terminal lysine residue and a cysteine residue in the second loop region (denoted K4), a second with a crosslink between the C-terminal lysine residue and a cysteine residue in the first loop region (denoted K58), and a third with crosslinks in both positions (denoted K4K58). Circular dichroism (CD) and surface-plasmon-resonance-based (SPR-based) biosensor studies of the protein domains showed that the three-helix structure and high-affinity binding to EGFR were preserved in the crosslinked protein domains. In vitro digestion by gastrointestinal proteases demonstrated that the crosslinked protein domains showed increased stability towards pepsin and towards a combination of trypsin and chymotrypsin.  相似文献   

5.
KDO8PS (3-deoxy-d-manno-octulosonate-8-phosphate synthase) and DAH7PS (3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthase) enzymes catalyse analogous condensation reactions between phosphoenolpyruvate and arabinose 5-phosphate or erythrose 4-phosphate, respectively. All known DAH7PS and some of KDO8PS enzymes (Aquifex aeolicus KDO8PS) require a metal ion for activity whereas another class of KDO8PS (including Escherichia coli KDO8PS) does not. Based on sequence alignment of all known KDO8PS and DAH7PS enzymes, we identified a single amino acid residue that might define the metal dependence of KDO8PS activity. One of the four metal-binding residues, a cysteine, is conserved only among metal-binding KDO8PS and DAH7PS enzymes and is replaced by an asparagine residue in other KDO8PS enzymes. We introduced a metal binding site into E.coli KDO8PS by a single N26C and a double M25P N26C mutation, which led to an increased k(cat) of the enzymes in the presence of activating Mn(2+) ions. The M25P N26C mutant of E.coli KDO8PS had a value of k(cat)/K(M) in the presence of Mn(2+) ions four times higher than A.aeolicus KDO8PS. KDO8PS and DAH7PS may have evolved from a common ancestor protein that required a divalent metal ion for activity. A non-metal-binding KDO8PSs may have evolved from an ancestor protein that was able to bind Mn(2+) but no longer required Mn(2+) to function and eventually lost one of metal-binding residues.  相似文献   

6.
ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.  相似文献   

7.
The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency than norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which, in the latter enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was mutated to phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the rate of product formation for acenaphthene oxidation was improved sixfold to 245 nmol per nmol CYP per min. Certain disubstituted naphthalenes and substrates, such as phenylcyclohexane and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space into the active site so as to accommodate these larger substrates did not improve the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates, this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine might interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1.  相似文献   

8.
Humans have evolved a natural immunity against Trypanosoma brucei infections, which is executed by two serum (lipo)protein complexes known as trypanolytic factors (TLF). The active TLF ingredient is the primate-specific apolipoprotein L1 (APOL1). The protein has a pore-forming activity that kills parasites by lysosomal and mitochondrial membrane fenestration. Of the many trypanosome subspecies, only two are able to counteract the activity of APOL1; this illustrates its evolutionarily optimized design and trypanocidal potency. Herein, we ask whether a synthetic (syn) TLF can be synthesized by using the design principles of the natural TLF complexes but with different chemical building blocks. We demonstrate the stepwise development of triterpenoid–peptide conjugates, in which the triterpenoids act as a cell-binding, uptake and lysosomal-transport modules and the synthetic peptide GALA acts as a pH-sensitive, pore-forming lysolytic toxin. As designed, the conjugate kills infective-stage African trypanosomes through lysosomal lysis thus demonstrating a proof-of-principle for the bioinspired, forward-design of a synTLF.  相似文献   

9.
Serine endoproteases such as trypsins and subtilisins are knownto have an extended substrate binding region that interactswith residues P6 to P3' of a substrate. In order to investigatethe structural and functional effects of replacing residuesat the S4 substrate binding pocket, the serine protease fromthe alkalophilic Bacillus strain PB92, which shows homologywith the subtilisins, was mutated at positions 102 and 126–128.Substitution of Val102 by Trp results in a 12–fold increasein activity towards succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide(sAAPFpNA). An X-ray structure analysis of the V102W mutantshows that the Trp side chain occupies a hydrophobic pocketat the surface of the molecule leaving a narrow crevice forthe P4 residue of a substrate. Better binding of sAAPFpNA bythe mutant compared with the wild type protein as indicatedby the kinetic data might be due to the hydrophobic interactionof Ala P4 of the substrate with the introduced Trp102 side chain.The observed difference in binding of sAAPFpNA by protease PB92and thermitase, both of which possess a Trp at position 102,is probably related to the amino acid substitutions at positions105 and 126 (in the protease PB92 numbering).Kinetic data forthe variants obtained by random mutation of residues Serl26,Prol27 and Serl28 reveal that the activity towards sAAPFpNAincreases when a hydrophobic residue is introduced at position126. An X-ray diffraction analysis was carried out for the threeprotease PB92 mutants which have residues Serl26-Prol27-Serl28replaced by Met-Ala-Gly(‘MAG’ mutant), Phe-Gln-Ser(‘FQS’ mutant) and Asn-Ser-Ala (‘NSA’mutant). Met 126 and Phel26 in the crystal structures of thecorresponding mutants are fixed in the same hydrophobic environmentas Trp102 in the V102W mutant.In contrast, Asnl26 in the ‘NSA’mutant is completely disordered in both crystal forms for whichthe structure has been determined. According to our kineticmeasurements none of the mutants with Met, Phe, Leu or Val atposition 126 binds sAAPFpNA better than the wild type enzyme.Resultsof the site-directed mutagenesis at position 127 imply thatpossible interaction of this residue with a substrate has almostno effect on activity towards sAAPFpNA and casein.  相似文献   

10.
There is a great deal of interest in proteins that can bind covalently to target molecules, as they allow unambiguous experiments by tight binding to molecules of interest. Here, we report the generation of proteins that undergo covalent labeling with small molecules through in vitro selection by using ribosome display. Selection was performed from a mutant library of the WW domain with a biotinylated peptide as its binding target, in which the biotin and the peptide are connected by a disulfide bond. After five rounds of selection, we identified mutants carrying a particular cysteine mutation. The binding target reacted specifically with the selected mutant, even in the presence of other proteins, and resulted in the generation of biotin- or peptide-labeled WW domains by thiol-disulfide exchange. When the mutant was fused to a protein of interest, the fusion protein was also labeled with biotin. Thus, the characteristics of the selected mutant should be suitable as a tag sequence that can be covalently labeled with small synthetic molecules. These results indicate that the rapid and efficient generation of such proteins is possible by ribosome display.  相似文献   

11.
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.  相似文献   

12.
The progesterone–binding protein uteroglobin has beenexpressed in Escherichia coli in an unfused, soluble form. likemature uteroglobin from rabbit endometrium (UG), the E.coliproduceduteroglobin (UG1) dimerizes in vitro, forms an antiparalleldimer with Cys3–Cys69' and Cys69–Cys3' disulfidebonds and binds progesterone under reducing conditions. In orderto analyze the dimerization and the reduction dependence ofprogesterone binding in more detail, we separately replacedcysteine 3 and cysteine 69 by serines. Under reducing conditions,both uteroglobin variants (UGl–3Ser and UGl–69Ser)bind progesterone with the same affinity as the wild–typesuggesting that both cysteine residues are not directly involvedin progesterone binding. In contrast to the wild–typeprotein, both cysteine variants also bind progesterone withhigh affinity in the absence of reducing agents. In addition,UGl-3Ser and UGl-69Ser both form covalently linked homodimers.Thus, unnatural Cys69–69' and Cys3–3' disulfidebonds exist in UG1–3Ser and UG1–69Ser, respectively.These data together with computer models based on X-ray diffractiondata strongly support the idea that progesterone reaches itsbinding site located in an internal hydrophobic cavity via ahydrophobic tunnel along helices 1 and 4. Under non–reducingconditions the tunnel is closed by two disulfide bridges (Cys3–Cys69'(and Cys69–Cys3') that lie in the most flexible regionof the dimer. Reduction or replacement of a cysteine residueenables conformational changes that open the channel allowingprogesterone to enter.  相似文献   

13.
The unusual chemical properties of active-site Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodo-spirillum rubrumhave suggested that this residue is required for catalysis.To test this postulate Lys-329 was replaced with glycine, serine,alanine, cysteine, arginine, glutamic acid or glutamine by site-directedmutagenesis. These single amino acid substitutions do not appearto induce major conformational changes because (i) intersubunitinteractions are unperturbed in that the purified mutant proteinsare stable dimers like the wild-type enzyme and (ii) intrasubunitfolding is normal in that the mutant proteins bind the competitiveinhibitor 6-phosphogluconate with an affinity similar to thatof wild-type enzyme. In contrast, all of the mutant proteinsare severely deficient in carboxylase activity (< 0.01% ofwild-type) and are unable to form the exchange-inert complex,characteristic of the wild-type enzyme, with the transitionstateanalogue carboxyarabinitol bisphosphate. These results underscorethe stringency of the requirement for a lysyl side-chain atposition 329 and imply that Lys-329 is involved in catalysis,perhaps stabilizing a transition state in the overall reactionpathway.  相似文献   

14.
Kelly MD  Mancera RL 《ChemMedChem》2006,1(3):366-375
Recently developed hydrogen-bonding and hydrophobic analysis algorithms were used to investigate the interaction properties of the ATP binding sites of CDK2, CDK4, and ERK2. We were able to prioritise those hydrogen-bonding groups that are observed to bind the native ATP ligand, as well as to identify other important groups found to bind inhibitors of these enzymes. However, as the hydrogen-bonding groups in the ATP binding sites of these enzymes are fairly well-conserved, we have confirmed that inhibitor selectivity may be predominantly due to differences in either the hydrophobic or steric properties of their binding sites. In particular, the hydrophobic properties of regions outside the specificity surface were observed to provide a rationale for the differences in specificity between various inhibitors to these enzymes. Our method was thus able to identify variations in hydrophobicity. The greater hydrophobicity of certain regions of CDK4 over analogous regions in CDK2 was detectable; likewise, it was possible to distinguish variations in hydrophobicity for regions of CDK2 against those in ERK2, despite the fact that these regions are largely composed of similar residue types.  相似文献   

15.
Bv8, a 77‐residue protein isolated from frogs, is the prototypic member of the prokineticin family of cytokines. Prokineticins (PKs) have only recently been identified in vertebrates (including humans), and they are believed to be involved in a number of key physiological processes, such as angiogenesis, neurogenesis, nociception, and tissue development. We used a combination of Boc solid‐phase peptide synthesis, native chemical ligation, and in vitro protein folding to establish robust chemical access to this molecule. Synthetic Bv8 was obtained in good yield and exhibited full activity in a human neuroblastoma cell line and rat dorsal root ganglion (DRG) neurons. The 3D structure of the synthetic protein was determined by using NMR spectroscopy and it was found to be homologous with that of mamba intestinal toxin 1, which is the only other known prokineticin structure. Analysis of a truncated mutant lacking five residues at the N terminus that are critical for receptor binding and activation showed no perturbation to the core protein structure. Together with the functional data, this suggests that receptor binding is likely to be a highly cooperative process possibly involving major allosterically driven structural rearrangements. The facile and efficient synthesis presented here will enable preparation of unique chemical analogues of prokineticins, which should be powerful tools for modulating the structure and function of prokineticins and their receptors, and studying the many physiological processes that have been linked to them.  相似文献   

16.
《分离科学与技术》2012,47(13):1689-1704
Abstract

The functions of additives in cellulose acetate butyrate (CAB) membrane casting solution, effect of thermal shrinkage treatment on porous CAB membranes, and the changes of CAB membrane surface morphology during the solvent evaporation step have been investigated. Additives (glycerol and lactic acid) in CAB membrane casting solution function only as pore number promoting agents when used at low concentration and function both as pore number and pore size promoting agents when used at higher concentrations. Triethyl phosphate in CAB membrane casting solution functions both as a pore number promoting agent and as a secondary solvent for CAB. Three distinct phases can be observed in the solvent evaporation step in making CAB membranes. With the increase in solvent evaporation time, the number of pores in the first pore size distribution increases in the initial small pore-forming phase and decreases in the large pore-forming phase, and the number of pores in the second pore size distribution always increases with solvent evaporation time. These changes in pore numbers, pore sizes, and pore number ratio in two pore size distributions as well as the membrane skin layer thickness together govern the ultimate membrane performance and result in a maximum solute separation which, in the case of CAB/ acetone membranes, falls at 60 seconds of solvent evaporation time. Significant improvement of the performance of a porous CAB membrane can be achieved by thermal shrinkage treatment. Equally high CAB membrane performance can also be achieved by using a lower concentration of additives in the membrane casting solution.  相似文献   

17.
Identification of novel agents for bladder cancer treatment is highly desirable due to the high incidence of tumor recurrence and the risk of progression to muscle-invasive disease. The key feature of the cholesterol-dependent toxin listeriolysin O mutant (LLO Y406A) is its preferential activity at pH 5.7, which could be exploited either directly for selective targeting of cancer cells or the release of accumulated therapeutics from acidic endosomes. Therefore, our goal was to compare the cytotoxic effect of LLO Y406A on cancer cells (RT4) and normal urothelial cells (NPU), and to identify which cell membranes are the primary target of LLO Y406A by viability assays, life-cell imaging, fluorescence, and electron microscopy. LLO Y406A decreased viability, altered cell morphology, provoked membrane blebbing, and induced apoptosis in RT4 cells, while it did not affect NPU cells. LLO Y406A did not cause endosomal escape in RT4 cells, while the plasma membrane of RT4 cells was revealed as the primary target of LLO Y406A. It has been concluded that LLO Y406A has the ability to selectively eliminate cancer urothelial cells through pore-forming activity at the plasma membrane, without cytotoxic effects on normal urothelial cells. This promising selective activity merits further testing as an anti-cancer agent.  相似文献   

18.
The role of four aromatic residues (W85, Y172, W266 and W274)in the structure–function relationship in xylanase A fromStreptomyces lividans (XlnA) was investigated by site-directedmutagenesis where each residue was subjected to three substitutions(W85A/H/F; W266A/H/F; W274A/H/F and Y172A/F/S). These four aminoacids are highly conserved among family 10 xylanases and structuraldata have implicated them in substrate binding at the activesite. Far-UV circular dichroism spectroscopy was used to showthat the overall structure of XlnA was not affected by any ofthese mutations. High-performance liquid chromatographic analysisof the hydrolysis products of birchwood xylan and xylopentaoseshowed that mutation of these aromatic residues did not alterthe enzyme's mode of action. As expected, though, it did reducethe affinity of XlnA for birchwood xylan. A comparison of thekinetic parameters of different mutants at the same positiondemonstrated the importance of the aromatic nature of W85, Y172and W274 in substrate binding. Replacement of these residuesby a phenylalanine resulted in mutant proteins with a KM closerto that of the wild-type protein in comparison with the othermutations analyzed. The kinetic analysis of the mutant proteinsat position W266 indicated that this amino acid is importantfor both substrate binding and efficient catalysis by XlnA.These studies also demonstrated the crucial role of these activesite aromatic residues for the thermal stability of XlnA.  相似文献   

19.
As a basis for the development of an artificial carbohydrate‐binding lectin, we chemically synthesized a domain of siglec‐7, a well‐characterized sialic‐acid‐binding lectin. The full polypeptide (127 amino acids) was constructed by sequential native chemical ligation (NCL) of five peptide segments. Because of poor cysteine availability for NCL, cysteine residues were introduced at suitable ligation sites; these cysteine residues were alkylated in order to mimic native glutamine or asparagine residues, or converted to an alanine residue by desulfurization after NCL. After folding the full‐length polypeptide, the sialic‐acid‐binding activity of the synthetic siglec‐7 was clearly demonstrated by STD NMR and ELISA experiments. We succeeded in the synthesis of siglec‐7 by installing three extra cysteine residues with side‐chain modifications and found that these modifications did not affect the binding activity.  相似文献   

20.
Several mutants of yeast phosphoglycerate kinase, each containingonly one internal cysteine residue, were constructed from asingle mutant devoid of cysteine. These cysteines were introducedas local conformational probes in selected buried positions.The enzyme activity, conformational characteristics and stabilityindicated that the mutations introduced only small perturbationsin the molecule. The folding–unfolding process mediatedby guanidine hydrochloride under equilibrium conditions wasstudied by following the variations in ellipticity and the reactivityof the cysteine residue towards 5,5'-dithiobis(nitrobenzoate).The process was found to be reversible except for mutant C97A,V49C,suggesting that this region located in helix I might be crucialin determining an intermediate on the folding pathway. The transitionsobtained by the two signals did not coincide, indicating thatthe local structures, in several parts inside the molecule,are more sensitive to the denaturant than the overall conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号