首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lecithin:cholesterol acyltransferase (LCAT) deficiency is a genetic disorder associated with low levels of serum HDL cholesterol. The proband of the Finnish LCAT-deficient family had corneal opacities, proteinuria, anemia with stomatocytosis, low serum HDL cholesterol (0.27 mmol/L), and low LCAT activity. Sequence analysis of his LCAT gene revealed compound heterozygosity for two different mutations: a C insertion in exon 1 between nucleotides 932 and 937 and a C-to-T point mutation in exon 6 at position 4976. The C insertion in exon 1 is predicted to result in premature termination and a truncated polypeptide containing only 16 amino acids. The C-to-T point mutation in exon 6 substitutes cysteine for arginine at residue 399. The functional significance of the Arg399-->Cys mutation was examined by expressing the mutated and wild-type LCAT cDNAs in COS cells. COS cells transfected with mutated and wild-type cDNAs showed comparable levels of mature LCAT mRNA. However, LCAT activity in the cell media of COS cells transfected with the mutant LCAT cDNA was significantly lower than that of COS cells transfected with the wild-type cDNA (1.4% versus 12.0% cholesterol esterified, respectively). A polymerase chain reaction-based duplex assay, in which both mutations can be detected simultaneously, was used for preliminary screening of Finnish subjects with serum HDL levels below 0.9 mmol/L; two additional individuals heterozygous for the Arg399-->Cys mutation were identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
p53 is very often mutated in human cancers. The majority of alterations are missense mutations located within the DNA-binding domain of the protein. Many reports have characterized such mutant proteins. Little is known, however, about the properties of proteins that have a missense mutation outside this domain. We investigated here the properties of 8 mutant proteins identified in human tumors as having a missense mutation in the tetramerization domain. The Arg342Gln, Glu349Asp and Gln354Arg proteins behaved like wild-type both in vitro and in cells. Two mutants, Arg342Pro and Leu344Pro, were inactive in all assays. Finally, the 3 mutant proteins Leu330His, Arg337Cys and Arg337Leu, which are inactive in vitro, showed no activity at low expression levels in cells but became active at higher expression levels. Our results reveal new phenotypes for p53 mutants and suggest that sequencing of the p53 gene from patients with tumors should be extended to exons 9 and 10 in clinical investigations.  相似文献   

3.
All affected patients in four families with autosomal dominant familial renal tubular acidosis (dRTA) were heterozygous for mutations in their red cell HCO3-/Cl- exchanger, band 3 (AE1, SLC4A1) genes, and these mutations were not found in any of the nine normal family members studied. The mutation Arg589--> His was present in two families, while Arg589--> Cys and Ser613--> Phe changes were found in the other families. Linkage studies confirmed the co-segregation of the disease with a genetic marker close to AE1. The affected individuals with the Arg589 mutations had reduced red cell sulfate transport and altered glycosylation of the red cell band 3 N-glycan chain. The red cells of individuals with the Ser613--> Phe mutation had markedly increased red cell sulfate transport but almost normal red cell iodide transport. The erythroid and kidney isoforms of the mutant band 3 proteins were expressed in Xenopus oocytes and all showed significant chloride transport activity. We conclude that dominantly inherited dRTA is associated with mutations in band 3; but both the disease and its autosomal dominant inheritance are not related simply to the anion transport activity of the mutant proteins.  相似文献   

4.
Cys-scanning mutagenesis has been applied to the remaining 45 residues in lactose permease that have not been mutagenized previously (from Gln100 to Arg144 which comprise helix IV and adjoining loops). Of the 45 single-Cys mutants, 26 accumulate lactose to > 75% of the steady state observed with Cys-less permease, and 14 mutants exhibit lower but significant levels of accumulation (35-65% of Cys-less permease). Permease with Phe140-->Cys or Lys131-->Cys exhibits low activity (15-20% of Cys-less permease), while mutants Gly115-->Cys, Glu126-->Cys and Arg144-->Cys are completely unable to accumulate the dissacharide. However, Cys-less permease with Ala or Pro in place of Gly115 is highly active, and replacement of Lys131 or Phe140 with Cys in wild-type permease has a less deleterious effect on activity. In contrast, mutant Glu126-->Cys or Arg144-->Cys is inactive with respect to both uphill and downhill transport in either Cys-less or wild-type permease. Furthermore, mutants Glu126-->Ala or Gln and Arg144-->Ala or Gln are also inactive in both backgrounds, and activity is not rescued by double neutral replacements or inversion of the charged residues at these positions. Finally, a mutant with Lys in place of Arg144 accumulates lactose to about 25% of the steady state of wild-type, but at a slow rate. Replacement of Glu126 with Asp, in contrast, has relatively little effect on activity. None of the effects can be attributed to decreased expression of the mutants, as judged by immunoblot analysis. Although the activity of most of the single-Cys mutants is unaffected by N-ethylmaleimide, Cys replacement at three positions (Ala127, Val132, or Phe138) renders the permease highly sensitive to alkylation. The results indicate that the cytoplasmic loop between helices IV and V, where insertional mutagenesis has little effect on activity [McKenna, E., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11954-11958], contains residues that play an important role in permease activity and that a carboxyl group at position 126 and a positive charge at position 144 are absolutely required.  相似文献   

5.
The significance of subunit interface residues Arg49 and Lys50 in the function of porcine liver fructose-1,6-bisphosphatase was explored by site-directed mutagenesis, initial rate kinetics, and circular dichroism spectroscopy. The Lys50 --> Met mutant had kinetic properties similar to the wild-type enzyme but was more thermostable. Mutants Arg49 --> Leu, Arg49 --> Asp, Arg49 --> Cys were less thermostable than the wild-type enzyme yet exhibited wild-type values for kcat and Km. The Ki for the competitive inhibitor fructose 2,6-bisphosphate increased 3- and 5-fold in Arg49 --> Leu and Arg49 --> Asp, respectively. The Ka for Mg2+ increased 4-8-fold for the Arg49 mutants, with no alteration in the cooperativity of Mg2+ binding. Position 49 mutants had 4-10-fold lower AMP affinity. Most significantly, the mechanism of AMP inhibition with respect to fructose 1,6-bisphosphate changed from noncompetitive (wild-type enzyme) to competitive (Arg49 --> Leu and Arg49 --> Asp mutants) and to uncompetitive (Arg49 --> Cys mutant). In addition, AMP cooperativity was absent in the Arg49 mutants. The R and T-state circular dichroism spectra of the position 49 mutants were identical and superimposable on only the R-state spectrum of the wild-type enzyme. Changes from noncompetitive to competitive inhibition by AMP can be accommodated within the framework of a steady-state Random Bi Bi mechanism. The appearance of uncompetitive inhibition, however, suggests that a more complex mechanism may be necessary to account for the kinetic properties of the enzyme.  相似文献   

6.
The microsomal enzyme glycosylphosphatidylinositol mannosyltransferase I (GPIMT-I) catalyses the transfer of a mannosyl residue from beta-mannosylphosphoryldolichol (beta-Man-P-Dol) to glucosamine-alpha(1,6)(acyl)phosphatidylinositol (GlcN-aPI) to form Man alpha(1,4)GlcN-aPI (ManGlcN-aPI), an intermediate in glycosylphosphatidylinositol (GPI) synthesis. While the transfer of [3H]mannosyl units to endogenous GlcN-aPI was not seen when membrane fractions from normal Chinese hamster ovary (CHO) K1 cells were incubated with exogenous [3H]Man-P-Dol, GPIMT-I activity could be characterized with an in vitro enzyme assay system employing membrane fractions from Lec15 or Lec35 cells. These CHO cell mutants apparently contain elevated levels of endogenous GlcN-aPI due to the inability to synthesize (Lec15) or utilize (Lec35) beta-Man-P-Dol in vivo. The presence of a saturated alpha-isoprene unit in the dolichyl moiety is required for optimal GPIMT-I activity since beta-mannosylphosphorylpolyprenol (beta-Man-P-Poly), which contains a fully unsaturated polyisoprenyl chain, was only 50% as effective as beta-[3H]Man-P-Dol as a mannosyl donor. When beta-[3H]-Man-P-Dol and alpha-[3H]Man-P-Dol were compared as substrates, GPIMT-I exhibited a strict stereospecificity for the mannolipid containing the beta-mannosyl-phosphoryl linkage. beta-[3H]Man-P-dolichols containing 11 or 19 isoprenyl units were equally effective substrates for GPIMT-I. Membrane fractions from Lec 9, a CHO mutant that apparently lacks polyprenol reductase activity and synthesizes very little beta-Man-P-Dol, but accumulates beta-Man-P-Poly, synthesized no detectable Man-GlcN-aPI when incubated with beta-[3H]Man-P-Dol in vitro. This indirect assay suggests that GlcN-aPI does not accumulate in Lec 9 cells, possibly because it is mannosylated via beta-Man-P-Poly, or perhaps the small amount of Man-P-Dol formed by the mutant in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We investigated the mechanisms responsible for severe factor VII (FVII) deficiency in homozygous Italian patients with either Gly97Cys or Gln100Arg mutations in the second epidermal growth factor domain of FVII. Transient expression of complementary DNA coding for the mutations in COS-1 cells showed impaired secretion of the mutant molecules. Using stably transfected Chinese hamster ovary (CHO) cells, we performed pulse-chase labeling studies, immunohistochemistry, and experiments with inhibitors of protein degradation, showing that FVII-Cys97 did not accumulate intracellularly but was degraded in a pre-Golgi, nonlysosomal compartment by a cysteine protease. In stably transfected CHO cells expressing FVII-Arg100, the level of intracellular FVII was not increased by several inhibitors of protein degradation, but FVII-Arg100 was retained in the endoplasmic reticulum for a longer period of time than wild-type FVII. FVII-Arg100 had a lower apparent molecular weight than did wild-type FVII under nondenaturing conditions, which is attributable to misfolding due to abnormal disulfide bond formation.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) O111:H2, O119:H6, or O142:H6 caused rapid detachment of Chinese hamster ovary (CHO) cell monolayers within 2 to 4 h of cocultivation. CHO cell detachment was not promoted by nonenteropathogenic E. coli (O125:H4, O126:H27, O157:H7, and O26:H11) and could not be attributed to EPEC production of enterohemolysin or Shiga-like toxins. In contrast, EPEC strains did not promote rapid detachment of Lec1, Lec2, or Lec8 CHO cell monolayers. These CHO cell Lec mutants all express abbreviated glycan sequences on membrane glycoproteins and glycolipids. Although EPEC strains failed to alter the adherent properties of Lec2 cells lacking only terminal sialic acid groups, EPEC adherence to the Lec2 mutant was indistinguishable from that observed with wild-type CHO cells. There was also no significant difference in EPEC-induced actin accumulation or invasion of Lec2 cells. In contrast, EPEC localized adherence to Lec1 and Lec8 mutants, lacking sialyllactosamine (Lec1) or sialic acid and galactose (Lec8) sequences, was reduced by 84 and 93%, respectively. Our results suggest that lactosamine sequences [beta Gal(1-4 or 1-3)beta GlcNAc] not containing sialic acid are sufficient for EPEC adherence, actin accumulation, and invasion of CHO cells. Sialic acid groups, however, may be necessary for EPEC-mediated CHO cell detachment.  相似文献   

9.
The Lewis alpha(1,3/1,4)-fucosyltransferase, Fuc-TIII, encoded by the FUT3 gene is responsible for the final synthesis of Lea and Leb antigens. Various point mutations have been described explaining the Lewis negative phenotype, Le(a-b-), on erythrocytes and secretions. Two of these, T202C and C314T originally described in a Swedish population, have not been found as single isolated point mutations so far. To define the relative contribution of each of these two mutations to the Lewis negative phenotype, we cloned and made chimeric FUT3 constructs separating the T202C mutation responsible for the amino acid change Trp68 --> Arg, from the C314T mutation leading to the Thr105 --> Met shift. COS-7 cells were transfected and the expression of Fuc-TIII enzyme activity and the presence of Lewis antigens were determined. There was no decrease in enzyme activity nor of immunofluorescence staining on cells transfected with the construct containing the isolated C314T mutation compared with cells transfected with a wild type FUT3 allele control. No enzyme activity nor immunoreactivity for Lewis antigens was detected in FUT3 constructs containing both mutations in combination. The T202C mutation alone decreased the enzyme activity to less than 1% of the activity of the wild type FUT3 allele. These results demonstrate, that the Trp68 --> Arg substitution in human Fuc-TIII is the capital amino acid change responsible for the appearance of the Le(a-b-) phenotype on human erythrocytes in individuals homozygous for both the T202C and C314T mutations.  相似文献   

10.
To stabilize Aspergillus awamori glucoamylase (GA), three proline substitution mutations were constructed. When expressed in Saccharomyces cerevisiae, Ser30-->Pro (S30P) stabilized the enzyme without decreased activity, whereas Asp345-->Pro (D345P) did not significantly alter and Glu408-->Pro (E408P) greatly decreased enzyme thermostability. The S30P mutation was combined with two previously identified stabilizing mutations: Gly137-->Ala, and Asn20-->Cys/Ala27-->Cys (which creates a disulfide bond between positions 20 and 27). The combined mutants demonstrated cumulative stabilization as shown by decreased irreversible thermoinactivation rates between 65 and 80 degrees C. Additionally, two of the combined mutants outperformed wild-type GA in high-temperature (65 degrees C) saccharifications of DE 10 maltodextrin and were more active than the wild-type enzyme when assayed using maltose as substrate.  相似文献   

11.
Factor XIII deficiency is an autosomal recessive bleeding disorder that is largely caused by various mutations in FXIII A-subunit gene. Characteristically, the patients lack both A-subunit activity and antigen in the circulation. Here we have analysed the consequences of four missense mutations (Met242-->Thr, Arg252-->Ile, Arg326-->Gln, Leu498 to Pro) and one stop mutation (Arg661-->Stop) in the FXIII A-subunit gene by expression in COS-cells. After transient transfection each mutant cDNA expressed mRNA at an equal level to the wild type FXIII. However, the mutant polypeptides accumulated in the cells in significantly reduced quantities and demonstrated only very low enzymatic activity. Analysis of immunoprecipitated metabolically labelled polypeptides demonstrated remarkable instability and intracellular degradation of all mutant FXIII proteins. These results verify the deleterious nature of the individual amino acid changes and confirm that protein instability and susceptibility to proteolysis are consequences of the mutations, as predicted from the three-dimensional model of crystallised FXIII A-subunit.  相似文献   

12.
The heme oxygenase (HO) system degrades heme to biliverdin and CO and releases chelated iron. In the primary sequence of the constitutive form, HO-2, there are three potential heme binding sites: two heme regulatory motifs (HRMs) with the absolutely conserved Cys-Pro pair, and a conserved 24-residue heme catalytic pocket with a histidine residue, His151 in rat HO-2. The visible and pyridine hemochromogen spectra suggest that the Escherichia coli expressed purified HO-2 is a hemoprotein. The absorption spectrum, heme fluorescence quenching, and heme titration analysis of the wild-type protein versus those of purified double cysteine mutant (Cys264/Cys281 --> Ala/Ala) suggest a role of the HRMs in heme binding. While the His151 --> Ala mutation inactivates HO-2, Cys264 --> Ala and Cys281 --> Ala mutations individually or together (HO-2 mut) do not decrease HO activity. Also, Pro265 --> Ala or Pro282 --> Ala mutation does not alter HO-2 activity. Northern blot analysis of ptk cells indicates that HO-2 mRNA is not regulated by heme. The findings, together with other salient features of HO-2 and the ability of heme-protein complexes to generate oxygen radicals, are consistent with HO-2, like five other HRM-containing proteins, having a regulatory function in the cell.  相似文献   

13.
Glu126 and Arg144 in the lactose permease are indispensable for substrate binding and probably form a charge-pair [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807]. Mutants with Glu126-->Ala or Arg144-->Ala do not bind ligand or catalyze lactose accumulation, efflux, exchange, downhill lactose translocation, or lactose-induced H+ influx. In contrast, mutants with conservative mutations (Glu126-->Asp or Arg144-->Lys) exhibit drastically different phenotypes. Arg144-->Lys permease accumulates lactose slowly to low levels, but does not bind ligand or catalyze equilibrium exchange, efflux, or lactose-induced H+ influx. In contrast, Glu126-->Asp permease catalyzes lactose accumulation and lactose-induced H+ influx to wild-type levels, but at significantly lower rates. Surprisingly, however, no significant exchange or efflux activity is observed. Glu126-->Asp permease exhibits about a 6-fold increase in the Km for active transport relative to wild-type permease with a comparable Vmax. Direct binding assays using flow dialysis demonstrate that mutant Glu126-->Asp binds p-nitrophenyl-alpha,D-galactopyranoside. Indirect binding assays utilizing substrate protection against [14C]-N-ethylmaleimide labeling of single-Cys148 permease reveal an apparent Kd of 3-5 mM for lactose and 15-20 microM for beta, D-galactopyranosyl-1-thio-beta,D-galactopyranoside (TDG). The affinity of Glu126-->Asp/Cys148 permease for lactose is markedly decreased (Kd > 80 mM), while TDG affinity is altered to a much lesser extent (Kd ca. 80 microM). The results extend the conclusion that a carboxylate at position 126 and a guanidinium group at position 144 are irreplaceable for substrate binding and support the idea that Arg144 plays a major role in substrate specificity.  相似文献   

14.
15.
BACKGROUND & AIMS: Defects in the Na+-dependent glucose transporter (SGLT1) are associated with the disorder glucose-galactose malabsorption, characterized by severe diarrhea. This study focused on a unique proband with glucose-galactose malabsorption who was investigated 30 years ago, and the aims of the study were to identify mutations in the SGLT1 gene and to determine the defect in sugar transport. METHODS: Mutations were identified by sequencing, and each mutant protein was then studied using a Xenopus oocyte heterologous expression system. Analysis included Western, freeze fracture, radiotracer uptake, and electrophysiological assays. RESULTS: Two heterozygous missense mutations (Cys355Ser and Leu147Arg) were identified that entirely eliminated Na+/sugar cotransport activity. Western blot analysis showed that the levels of both mutant proteins in the oocyte were comparable to wild-type SGLT1, but no complex glycosylation was detected. No SGLT1 charge movements were observed with the mutant proteins, and freeze fracture data showed that neither mutant protein reached the plasma membrane. CONCLUSIONS: The Cys355Ser and Leu147Arg mutations eliminate the Na+/sugar cotransport by blocking the transfer of SGLT1 protein from the endoplasmic reticulum to the plasma membrane. This is consistent with earlier studies on phlorizin binding to the brush border membrane of duodenal biopsy specimens from this patient.  相似文献   

16.
17.
Type IIB von Willebrand disease (vWD) is characterized by a selective loss of high molecular weight von Willebrand factor (vWF) multimers in plasma due to their abnormally enhanced reactivity with platelets. Several missense mutations in the platelet glycoprotein Ib (GPIb) binding domain of vWF were recently characterized that cause type IIB vWD. The effect of type IIB mutation Arg(545)Cys on vWF binding to platelet GPIb was studied using recombinant wild type (rvWFWT) and mutant rvWFR545C expressed in COS-7 cells. In the absence of ristocetin, 50% of rvWFR545C bound spontaneously to platelet GPIb and the binding increased to 70% in the presence of 0.2 mg/ml ristocetin; rvWFWT did not bind significantly under either condition. Botrocetin-induced binding of rvWFR545C was only slightly increased compared to rvWFWT. These data demonstrate that the Arg(545)Cys mutation increases the affinity of vWF for GPIb, resulting in the characteristics gain-of-function type IIB vWD phenotype.  相似文献   

18.
High levels of resistance to thapsigargin (TG), a specific inhibitor of intracellular Ca2+ transport ATPases (SERCAs), can be developed in culture by stepwise exposure of mammalian cells to increasing concentrations of TG. We have identified, in two independently selected TG-resistant hamster cell lines of different lineages, mutant forms of SERCA. In the TG-resistant Chinese hamster lung fibroblast cell line DC-3F/TG, a T --> C change at nucleotide 766 introduces a Phe256 --> Leu alteration within the first cytosolic loop of the SERCA. In contrast, in the TG-resistant Syrian hamster smooth muscle cell line DDT/TG 4 microM, a T --> C change at nucleotide 767 introduces a Phe256 --> Ser mutation at that position. When these specific mutations are introduced into a wild-type full-length avian SERCA1 cDNA, transfection experiments reveal that Ca2+ transport function and ATP hydrolytic activity are not altered by such mutations. However, a 4-5-fold resistance to TG inhibition of Ca2+ transport function occurs upon the introduction of either the Phe256 --> Leu or the Phe256 --> Ser mutation into wild-type SERCA1. These specific mutations also render the hydrolytic activity of the ATPase resistant to inhibition by TG. Our results not only implicate amino acid 256 in TG-SERCA interactions, but also demonstrate that specific mutations within SERCA can mediate resistance to TG.  相似文献   

19.
Chinese hamster ovary (CHO) mutants belonging to the Lec2 complementation group are unable to translocate CMP-sialic acid to the lumen of the Golgi apparatus. Complementation cloning in these cells has recently been used to isolate cDNAs encoding the CMP-sialic acid transporter from mouse and hamster. The present study was carried out to determine the molecular defects leading to the inactivation of CMP-sialic acid transport. To this end, CMP-sialic acid transporter cDNAs derived from five independent clones of the Lec2 complementation group, were analyzed. Deletions in the coding region were observed for three clones, and single mutants were found to contain an insertion and a point mutation. Epitope-tagged variants of the wild-type transporter protein and of the mutants were used to investigate the effect of the structural changes on the expression and subcellular targeting of the transporter proteins. Mutants derived from deletions showed reduced protein expression and in immunofluorescence showed a diffuse staining throughout the cytoplasm in transiently transfected cells, while the translation product derived from the point-mutated cDNA (G189E) was expressed at the level of the wild-type transporter and co-localized with the Golgi marker alpha-mannosidase II. This mutation therefore seems to directly affect the transport activity. Site-directed mutagenesis was used to change glycine 189 into alanine, glutamine, and isoleucine, respectively. While the G189A mutant was able to complement CMP-sialic acid transport-deficient Chinese hamster ovary mutants, the exchange of glycine 189 into glutamine or isoleucine dramatically affected the transport activity of the CMP-sialic acid transporter.  相似文献   

20.
PURPOSE: To review studies of mutagen-induced colony sectoring which demonstrate that UV light and EMS produce delayed mutational events in Chinese hamster ovary cells. METHODS AND RESULTS: Since the late 1940s, it has been known that the treatment of a single bacterial or yeast cell with mutagenic agents produces complete mutant colonies (pures) and colonies composed of both mutant and non-mutant cell types (mosaics) with various sectored patterns. A similar sectoring phenomenon has been observed in Chinese hamster ovary cells (CHO) using the DNA alkylating agent ethyl methane sulphonate (EMS) or ultraviolet light. However, unlike bacteria and yeast, a significant fraction of CHO mutant colonies contained sectors of less than 1/2; i.e. 1/4, 1/8 and 1/16 sectors, suggesting a delayed production of mutations. Using various colony-replating approaches, it was found that these mutagenic agents produced the ratio of mutant to wild-type cells expected for a delayed mutational process which produces mutant events for at least 12-14 cell divisions following treatment. This delayed mutation phenomenon was observed at both the glucose-6-phosphate dehydrogenase (G6PD) and hypoxanthine guanine phosphoribosyltransferase (HGPRT) loci. Various mutational mechanisms for the production of delayed mutations are discussed. CONCLUSIONS: These studies suggest that mutagens such as UV light and EMS induce long-term alterations in mammalian cells that act to increase the 'apparent' spontaneous mutation frequency. This delayed mutational decrease in stability of the genome may explain the accumulation over time of the multiple genetic changes observed in malignant tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号