首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An adaptive computer-based spatial-filtering velocimeter to measure the surface velocity of a natural debris flow with high accuracy is described that can adjust the filter parameters, specifically, the slit width of the filter, based on the surface-pattern characteristics of the flow. A computer simulation confirms the effectiveness of this technique. The surface velocity of a natural debris flow at the Mt. Yakedake Volcano, Japan, was estimated by this adaptive method, and the results were compared with those obtained by two other methods: hardware-based spatial filtering and normal computer-based spatial filtering.  相似文献   

2.
We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement.  相似文献   

3.
Storrs M  Mehrl DJ  Walkup JF 《Applied optics》1996,35(23):4632-4636
We describe a programmable spatial-filtering system using bacteriorhodopsin (BR) film as a programmable, optically addressed spatial light modulator illuminated by a single wavelength of light. We use a computer-controlled mirror scanning system to write time-varying filter functions to the BR film and present proof-of-principle experimental results that demonstrate several elementary filtering operations.  相似文献   

4.
This paper is concerned with the characterization of the true locally resolved surface normal velocity of an assumed piston-type ultrasonic transducer. Instead of involving a very complicated direct pointwise measurement of the velocity distribution, an inverse problem is solved which yields a spatially discretized weighting vector for the surface normal velocity of the transducer. The study deals with a spherically focused high frequency transducer, which is driven in pulse-echo mode. As a means of posing the inverse problem, the active transducer surface is divided into annuli of equal surface so that for each annulus the spatial impulse response can be calculated. An acrylic glass plate acts as a simple structured target. The resulting ill-posed nonlinear inverse problem is solved with an iterative regularized Gauss-Newton algorithm. The solution of the inverse problem yields an estimated weight for the surface normal velocity for each annulus. Experimental results for a thin copper wire target are compared to simulation results for both uniform and estimated surface normal velocities.  相似文献   

5.
传统的彩色多普勒成像只能测量与超声波束平行的血流速度分量,且依赖于超声波束与血管之间的夹角。超声向量血流成像是一种更加先进的血流成像技术,该方法可以直接获得血流速度的实际大小和方向,因此不依赖于超声波束与血管之间的夹角。本文从向量血流测量方法之一的横向声场法入手,简要概括了横向振荡(Transverse Oscillation, TO)法和空间正交(Spatial Quadrature, SQ)法两种方法的基本原理、成像过程及各自的优缺点,并提出了一种互相结合的方法,即奇偶振荡法(Odd Even Oscillation, OEO),该方法利用SQ法快速进行波束合成,利用TO法计算最终的速度矢量,克服了TO法和SQ法各自的缺点,能够有效解决TO法成像计算量大以及SQ法出现混叠和对噪声灵敏度高的问题。  相似文献   

6.
7.
Banerjee PP  Cao D  Poon TC 《Applied optics》1998,37(32):7532-7537
The role of acousto-optic (AO) modulators in programmable real-time image processing has recently been demonstrated. For fully investigating the image-processing capabilities of the AO modulator, general techniques to derive spatial transfer functions are needed for a variety of physical situations. We develop a technique to determine the spatial transfer functions numerically for various cases of beam incidence on an AO modulator. Normal incidence and incidence at twice the Bragg angle are investigated as examples for which double-sided and single-sided notch spatial filtering, respectively, are achieved. The observed spatial-filtering characteristics are reconciled with simple intuitive physical arguments.  相似文献   

8.
9.
Ritt G  Eberle B 《Applied optics》2011,50(21):3847-3853
We describe a new concept of an electro-optical sensor with the capability of simultaneous spatial and spectral filtering. It is based on a spatial light modulator, and in combination with the technique of wavelength multiplexing, it enables one to manipulate the spectral content of an indicated spot within the field of view of the sensor. This new concept allows the attenuation of monochromatic light of undetermined wavelengths in particular and is of worth for imaging vision systems to suppress unwanted detector overexposure.  相似文献   

10.
In order to map blood velocity in small regions near the transducer, we evaluate the performance of the wideband maximum likelihood (WMLE) strategy and infinite impulse response (IIR) filters for blood velocity estimation with a transducer center frequency of 38 MHz. Using a short transmitted pulse and the narrow lateral beam width obtained using this frequency, we show that velocities smaller than 1 mm/s can be estimated reliably. In addition, using both changes in the location and magnitude of the peak of the RF correlation, vessels as small as 40 μm can be visualized in the RF signal and distinguished from stationary tissue. The experimental system also provides the opportunity to examine changes in flow and in the vessel wall over a cardiac cycle  相似文献   

11.
A coherent multiple imaging technique for use in optical microlithography was studied. The technique involves placing a thin Fabry-Perot etalon between the mask and the projection lens of an optical stepper. An optical lithographic computer simulation tool, Prolith/2, was used to evaluate the aerial image profile obtained for extended mask structures such as typical contact hole arrays and line-space patterns used in integrated circuit fabrication. Additionally, a set of experimental studies were performed to validate the simulation results. Enhancement of both resolution and depth of focus can be obtained simultaneously with appropriate etalon parameters.  相似文献   

12.
13.
In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow using an intravascular ultrasound (IVUS) array catheter are studied by means of computer modeling. Blood was simulated as a collection of randomly located point scatterers; moving this scattering medium transversally across the acoustical beam represented flow. First-order statistics were evaluated, and the signal-to-noise ratio from the signals were measured. The correlation coefficient method was used to present the results. Three velocity profiles were simulated: random spread of blood-flow velocity, linear blood-flow velocity gradient, and parabolic blood-flow. Radio frequency and envelope signals were used to calculate the decorrelation pattern. The results were compared to the mean decorrelation pattern for plug blood-flow. The RF signals decorrelation patterns were in good agreement with those obtained for plug blood flow. Envelope decorrelation patterns show a close agreement with the one for plug blood flow. For axial blood flow, there is a discrepancy between decorrelation patterns. The results presented here suggest that the decorrelation properties of an IVUS array catheter for measuring quantitative transverse blood flow probably will not be affected by different transverse blood-flow conditions  相似文献   

14.
A saturable-absorber-based technique for spatial filtering of high-average-power laser beams is described. For a focused, radially symmetric beam having its highest intensity at the center, this saturable absorber behaves like a soft aperture with gradually increasing attenuation toward the beam edges, thus selectively transmitting the low divergence components that are confined close to the central axis of the propagating laser beam. This technique has been successfully used to reduce the divergence of a high-power, high-repetition-rate, tunable, narrowband, pulsed dye laser. Our results demonstrate how a judicious choice of operating parameters allows spatial filtering to be achieved with the introduction of a minimum absorption loss of the laser beam in the saturable absorber. Following a time-dependent analysis of a rate equation model describing the propagation and interaction of the laser beam with the saturable absorber, we have also obtained theoretical estimates for the extent of spatial filtering. Our theoretical estimates have been found to be in good agreement with our experimental observations.  相似文献   

15.
Takahashi T  Ishii Y 《Applied optics》1997,36(5):1073-1085
A real-time optical processing system with dual liquid-crystal spatial light modulators is constructed and used as both an amplitude-input device and a multilevel phase-only filter. Fourier analysis is given to show the performance of light efficiency, signal-to-noise ratio, and discrimination capability with the binarization of gray objects. The ratio of the dc power spectrum to the power spectra for input objects is introduced to incorporate the power spectrum into discrimination-capability evaluation. A numerical calculation is performed for gray-level and binarized amplitude-phase correlations. Improvement of the performance criteria has been achieved for an amplitude in a binary mode to a phase correlator. The higher the threshold level of the binarized objects is, the better performance criteria are produced. The effect of illumination over an input object on the autocorrelation maximum is experimentally investigated. Experimental results are presented to support the calculations.  相似文献   

16.
17.
The general two-phase debris flow model proposed by Pudasaini (J. Geophys. Res. 117:F03010, 2012, doi:10.1029/2011JF002186) is employed to simulate subaerial and submarine two-phase debris flows and the mechanics of complex wave generation and interactions between the solid and the fluid phases. This includes the fluid waves or the tsunami generated by the debris impact at reservoirs, lakes, and oceans. The analysis describes the generation, amplification, and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. Accurate and advance knowledge of the arrival of tsunami waves in the coastal regions is very important for the design of early warning strategies. Here, we show that the amount of solid grain in the fluid reservoir plays a significant role in controlling the overall dynamics of the submarine debris flow and the tsunami. For very small solid particle concentrations in the reservoir, the submarine debris flow moves significantly faster than the surface tsunami wave. As the solid volume fraction in the reservoir increases, the submarine debris speed slows down. For relatively large solid volume fractions in the reservoir, the speed of the submarine debris becomes slower than the surface tsunami wave. This information can be useful for early warning strategies in the coastal regions. The fast or slow speed of the submarine wave can be attributed to several dynamical aspects of the model including the generalized drag, basal traction, pressure gradient, virtual mass force, the non-Newtonian viscous stress, and the strong phase interaction between the solid and the fluid as they enhance or diminish the motion of the solid phase. Solid particle concentration in the reservoir dam also substantially influences the interaction between the submarine debris flow and the frontal wall of the dam, and the interaction between the tsunami and the submarine debris wave. The tsunami wave impact generates a largely amplified fluid level at the dam wall. Submarine debris shock waves are observed for small solid volume fractions in the reservoir. Another important aspect of the simulation is to investigate the complex interactions between the internal submarine debris wave and the surface tsunami wave. Three complex waves occur simultaneously: the subaerial debris flow in the upstream region, submarine debris flow in the reservoir basin, and a super tsunami wave on the surface of the reservoir. This helps to develop insight into the basic features of the complex nonlinear solid and fluid waves and their interactions.  相似文献   

18.
With a spatial-filtering method of gating, we explore image formation through scattering media using first-arriving light. Gating times of a few femtoseconds and less are produced, and the resolution at these extremely short gating times is investigated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号