首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Todorov  A. Paneva 《Thin solid films》2010,518(12):3280-3869
Optical properties of thin chalcogenide films from the systems As-S(Se) and As-S-Se were investigated as a function of the film composition, film thickness and conditions of illumination by light using multiple-angle-of-incidence ellipsometry. Thin films were deposited by thermal evaporation and exposed to white light (halogen lamp) and to monochromatic light from Ar+ — (λ = 488, 514 nm) and He-Ne- (λ = 632.8 nm) lasers. The ellipsometric measurements were carried out at three different angles of light incidence in the interval 45-55°, at λ = 632.8 nm. An isotropic absorbing layer model was applied for calculation of the optical constants (refractive index, n and extinction coefficient, k) and film thickness, d. The homogeneity of the films was checked and verified by applying single-angle calculations at different angles. It was shown that the refractive index, n of As-S-Se films is independent of film thickness in the range of 50 to 1000 nm and its values varied from 2.45 to 3.05 for thin layers with composition As2S3 and As2Se3, respectively. The effect of increasing in the refractive index was observed after exposure to light which is related to the process of photodarkening in arsenic containing layers. The viability of the method for determining the optical constants of very thin chalcogenide films with a high accuracy was confirmed.  相似文献   

2.
S. Iwatsubo 《Vacuum》2006,80(7):708-711
Indium tin oxide (ITO) films were deposited by reactive ion-beam sputtering. The relationship among the surface morphology, the resistivity ρ of the films, the substrate temperature TS and the film thickness tF was investigated. The heat power from the ion source during the sputtering was 265 W. TS increased from 30 to 145 °C with an increase of tF. The films thinner than 187 nm at TS lower than 120 °C were amorphous, the film surface was as smooth as the substrate. The films deposited at TS in the range between 135 and 145 °C were polycrystalline. So, the films thicker than 375 nm were in a multilayer structure of a polycrystalline layer on an amorphous layer. The surface of the polycrystalline films became rough. ρ of the films suddenly decreased at tF of 375 nm, where the structure of the films changed. Next, the amorphous films with tF of 39 nm were annealed in the atmosphere. The film structure changed to a polycrystalline structure at annealing temperature TA of 350 °C. However, the surface roughness of all the films was almost same. As a result, the substrate temperature during the sputtering was important for the deposition of the films with a very smooth surface.  相似文献   

3.
C. Araújo  M. Aguiar 《Vacuum》2008,82(12):1437-1440
Cobalt ferrite (CoFe2O4) thin films have been deposited on Si (001) substrates, with different substrate temperatures (Tdep = 25 °C − 600 °C). The films were prepared by pulsed laser ablation with a KrF excimer laser (wavelength λ = 248 nm). The oxygen pressure during deposition was 2 × 10−2 mbar. The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low deposition temperatures, the films presented a mixture of a CoFe2O4 phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the deposition temperature increased, the CoO and FeO relative content strongly decreased, so that for Tdep = 600 °C the films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field (Hexch) originated by the presence of the antiferromagnetic phases. The exchange field decreased with increasing deposition temperature, and was accompanied by a corresponding increase of the coercivity and remanence ratio of the cycles. This behavior was due to the strong reduction of the CoO and FeO content, and to the corresponding dominance of the CoFe2O4 phase on the magnetic properties of the thin films.  相似文献   

4.
In the present study, diffusion phenomena in titanium/gold (Ti/Au) thin films occurring at temperatures ranging between 200 and 400 °C are investigated.The motivation is twofold: the first objective is to characterize Ti diffusion into Au layer as an effect of different heat-treatments. The second goal is to prove that the implementation of a thin titanium nitride (TiN) layer between Ti and Au can remarkably reduce Ti diffusion.It is observed that Ti atoms can fully diffuse through polycrystalline Au thin films (260 nm thick) already at temperatures as a low as 250 °C. Starting from secondary ion mass spectroscopy data, the overall diffusion activation energy ΔE = 0.66 eV and the corresponding pre-exponential factor D0 = 5 × 10− 11 cm2/s are determined. As for the grain boundary diffusivity, both the activation energy range 0.54 < ΔEgb < 0.66 eV and the pre-exponential factor s0Dgb0 = 1.14 × 10− 8 cm2/s are obtained. Finally, it is observed that the insertion of a thin TiN layer (40 nm) between gold and titanium acts as an effective diffusion barrier up to 400 °C.  相似文献   

5.
Modification of AZO thin-film properties by annealing and ion etching   总被引:1,自引:0,他引:1  
Effects of annealing and ion etching on the structural, electrical and optical properties of sputtered ZnO:Al (AZO) thin films were investigated. The post-deposition annealing at temperatures TA = 200-400 °C in the forming gas (80% N2/20% H2) for 1 h and ion RF-sputter etching after annealing were used. Ion-sputter etching rate was 7 nm/min. The surface topography changed noticeably after ion-sputter etching: the surface of the sample was rougher (Ra = 33 nm) in comparison with annealed sample only (Ra = 9 nm). After the post-deposition annealing temperature TA = 400 °C and ion-sputter etching thin films have higher integral transmittance (in the range of λ = 400-1000 nm) than non-etched samples. The figure of merit (F) became higher with increase of annealing temperature and the maximum value was F = 8%/Ω at TA = 400 °C (Rs = 10 Ω, Tint = 86%).  相似文献   

6.
Tin-doped indium oxide (ITO) thin films were fabricated by the sol-gel spin-coating method with different indium precursor solutions synthesized from In(NO3)3 or InCl3 (denoted as N-ITO and Cl-ITO, respectively). For both N-ITO and Cl-ITO thin films, the increase of mobility/conductivity and the reduction of carrier concentration with increasing annealing temperatures from 400 to 700 °C are related to the increase of crystallization/densification and the annihilation of oxygen vacancies. The refractive index (1.84 at λ = 550 nm), packing density (0.83), conductivity [(234 (Ω-cm)− 1], and optical band gap (3.95 eV) of N-ITO thin films are higher than that of Cl-ITO thin films, which can be attributed to the higher densification, lower crystallinity, and more free charge carriers of N-ITO thin films. These properties make the indium nitrate-derived ITO thin films have better potential applications for some commercial products.  相似文献   

7.
X.Y. Zhang 《Thin solid films》2010,518(14):3813-3818
Single crystal CrN(001) layers, 10 to 160 nm thick, were grown on MgO(001) by reactive magnetron sputtering at growth temperatures Ts = 600 and 800 °C. Insitu scanning tunneling microscopy shows that all layer surfaces exhibit mounds with atomically smooth terraces that are separated by monolayer-high step edges aligned along ( 110) directions, indicating N-rich surface islands. For Ts = 600 °C, the root mean square surface roughness σ initially increases sharply from 0.7 ± 0.2 for a thickness t = 10 nm to 2.4 ± 0.5 nm for t = 20 nm, but then remains constant at σ = 2.43 ± 0.13 nm for t = 40, 80 and 160 nm. The mounds exhibit square shapes with edges along ( 110) directions for t ≤ 40 nm, but develop dendritic shapes at t = 80 nm which revert back to squares at t = 160 nm. This is associated with a lateral mound growth that is followed by coarsening, yielding a decrease in the mound density from 5700 to 700 µm2 and an initial increase in the lateral coherence length ξ from 7.2 ± 0.6 to 16.3 ± 0.8 to 24 ± 3 nm for t = 10, 20, and 40 nm, respectively, followed by a drop in ξ to 22 ± 2 and 16 ± 2 nm for t = 80 and 160 nm, respectively. Growth at Ts = 800 °C results in opposite trends: σ and ξ decrease by a factor of 2, from 2.0 ± 0.4 and 20 ± 4 nm for t = 10 nm to 0.92 ± 0.07 and 10.3 ± 0.4 nm for t = 20 nm, respectively, while the mound density remains approximately constant at 900 μm2. This unexpected trend is associated with mounds that elongate and join along ( 100) directions, yielding long chains of interconnected square mounds for t = 40 nm. However, coalescence during continued growth to t = 160 nm reduces the mound density to 100 µm2 and increases σ and ξ to 2.5 ± 0.1 and 40 ± 2 nm, respectively.  相似文献   

8.
A. Celik  E. Bacaksiz 《Thin solid films》2009,517(9):2851-1374
Nickel diffusion in CuInSe2 thin films was studied in the temperature range 430-520 °C. Thin films of copper indium diselenide (CuInSe2) were prepared by selenization of CuInSe2-Cu-In multilayered structure on glass substrate. A thin film of Nickel was deposited and annealed at different temperatures. Surface morphologies of the Ni diffused and undiffused CuInSe2 films were investigated using scanning electron microscope. The alteration of Nickel concentration in the CuInSe2 thin film was measured by Energy Dispersive X-Ray Fluorescence (EDXRF) technique. These measurements were fitted to a complementary error function solution and the diffusion coefficients at four different temperatures were evaluated. The diffusion coefficients of Ni in CuInSe2 films were estimated from concentration profiles at temperatures 430-520 °C as D = 1.86 × 10− 7(cm2s− 1)exp[− 0.68(eV)/kT].  相似文献   

9.
Al-doped transparent conducting zinc oxide (AZO) films, approximately 20-110 nm-thick, were deposited on glass substrates at substrate temperatures between 200 and 300 °C by pulsed laser deposition (PLD) using an ArF excimer laser (λ = 193 nm). When fabricated at a substrate temperature of 260 °C, a 40-nm-thick AZO film showed a low resistivity of 2.61 × 10− 4 Ω·cm, carrier concentration of 8.64 × 1020 cm− 3, and Hall mobility of 27.7 cm2/V·s. Furthermore, for an ultrathin 20-nm-thick film, a resistivity of 3.91 × 10− 4 Ω·cm, carrier concentration of 7.14 × 1020 cm− 3, and Hall mobility of 22.4 cm2/V·s were obtained. X-ray diffraction (XRD) spectra, obtained by the θ-2θ method, of the AZO films grown at a substrate temperature of 260 °C showed that the diffraction peak of the ZnO (0002) plane increased as the film thickness increased from 20 to 110 nm. The full-width-at-half-maximum (FWHM) values were 0.5500°, 0.3845°, and 0.2979° for film thicknesses of 20, 40, and 110 nm, respectively. For these films, the values of the average transmittance in visible light wavelengths (400-700 nm) were 95.1%, 94.2%, and 96.6%, respectively. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations showed that even the 20-nm-thick films did not show island structures. In addition, exfoliated areas or vacant and void spaces were not observed for any of the films.  相似文献   

10.
Ion conductivities of layer-by-layer (LBL) assemblies of solid thin film polyelectrolyte systems involving poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) were found to be a strong function of the number of bilayer stacks, n, with conductivities approaching 10− 7 S/cm for n < 10, compared to 10− 9 S/cm for n ≥ 10 and 10− 10 S/cm for bulk PEO. Increased ion conductivity for low LBL stack numbers (n < 10) originated to part from an effective suppression of the PEO crystallization via PEO/PAA blending, which could be inferred from local glass transition temperature measurements involving shear modulation force microscopy. Another phenomenon responsible for high conductivity in thin films was found in the in-plane phase heterogeneity of PEO and PAA. Increased ion conductivity for larger LBL stacks (n ≥ 10) were attributed to low concentration autoblending caused by PEO-PAA hydrogen bonding, and an average layer thickness of noticeably less than 100 nm. The effect of interfacial constraints was evident in the degree of intermixing, addressed by a thin film extended Fox blend analysis, in the glass and melting transitions of PEO and PAA pure film components. While the glass transition value of PAA decreased by 55% to 46 °C for an 8 nm film, the melting transition for PEO decreased by 15% to 64 °C caused by surface tension effects.  相似文献   

11.
Nanocrystalline CdxZn1 − xO thin films with different Cd volume ratios in solution (x = 0, 0.25, 0.50, 0.75 and 1) have been deposited on glass substrate by sol-gel dip-coating method. The as-deposited films were subjected to drying and annealing temperatures of 275 °C and 450 °C in air, respectively. The prepared films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy and dc-electrical measurements. The results show that the samples are polycrystalline and the crystallinity of the films enhanced with x. The average grain size is in the range of 20-53 nm. The atomic percent of Cd:Zn was found to be 9.50:1.04, 6.20:3.77 and 4.42:6.61 for x = 0.75, 0.50 and 0.25, respectively. It was observed that the transmittance and the band gap decreased as x increased. All the films exhibit n-type electrical conductivity. The resistivity (ρ) and mobility (μ) are in the range of 3.3 × 102 − 3.4 × 10− 3 Ω cm, and 1.5 − 45 cm2 V− 1 s− 1 respectively. The electron density lies between 1.26 × 1016 and 0.2 × 1020 cm− 3.  相似文献   

12.
Tantalum and niobium oxide optical thin films were prepared at room temperature by plasma-enhanced chemical vapor deposition using tantalum and niobium pentaethoxide (M(OC2H5)5) precursors. We studied the evolution of their optical and microstructural properties as a result of annealing over a broad temperature range from room temperature up to 900 °C. The as-deposited films were amorphous; their refractive index, n, and extinction coefficient, k, at 550 nm were n = 2.13 and k < 10− 4 for Ta2O5, and n = 2.24 and k < 10− 4 for Nb2O5. The films contained a small amount of residual carbon (∼ 2-6 at.%) bonded mostly to oxygen. During annealing, the onset of crystallization was observed at approximately TC1 = 650 °C for Ta2O5 and at TC1 = 450 °C for Nb2O5. Upon annealing close to T1 (300 °C for Nb2O5 and 400 °C for Ta2O5), n at 550 nm decreased by less than 1%. This was correlated with the decrease of carbon content, as suggested by Fourier transform infrared spectroscopy, elastic recoil detection and static secondary ion mass spectroscopy (SIMS) results. During annealing, we observed phase transition from the δ- (hexagonal) phase to the L- (orthorhombic) phase between 800 °C and 900 °C for Ta2O5, and between 600 °C and 700 °C for Nb2O5. The structural changes were also marked by silicon diffusion from the substrate into the oxide layer at annealing temperatures above 500 °C for Ta2O5 and above 400 °C for Nb2O5. As a consequence of oxygen, silicon and metal interdiffusion, the interface between the Si substrate and the metal oxide (Ta2O5 or Nb2O5) is characterized by its broadening, well documented by spectroscopic ellipsometry and SIMS data.  相似文献   

13.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

14.
A procedure to dope n-type Cr2 − xTixO3 thin films is proposed. Besides doping the material, at the same time the method forms ohmic contacts on TixCr2 − xO3 films. It consists on the deposition of 10 nm Ti and 50 nm Au, followed by thermal annealing at 1000 °C for 20 min in N2 atmosphere. Ohmic contacts were formed on three samples with different composition: x = 0.17, 0.41 and 1.07 in a van der Pauw geometry for Hall effect measurements. These measurements are done between 35 K and 373 K. All samples showed n-type nature, with a charge carrier density (n) on the order of 1020 cm− 3, decreasing as x increased. As a function of temperature, n shows a minimum around 150 K, while the mobilities have an almost constant value of 11, 28 and 7 cm2V− 1 s− 1 for x = 0.17, 0.41 and 1.07, respectively.  相似文献   

15.
We report on preparation and properties of anatase Nb-doped TiO2 transparent conducting oxide films on glass and polyimide substrates. Amorphous Ti0.96Nb0.04O2 films were deposited at room temperature by using sputtering, and were then crystallized through annealing under reducing atmosphere. Use of a seed layer substantially improved the crystallinity and resistivity (ρ) of the films. We attained ρ = 9.2 × 10− 4 Ω cm and transmittance of ~ 70% in the visible region on glass by annealing at 300 °C in vacuum. The minimum ρ of 7.0 × 10− 4 Ω cm was obtained by 400 °C annealing in pure H2.  相似文献   

16.
Cetyltrimethyl ammonium bromide (CTAB) templated mesoporous indium tin oxide (ITO) thin films were deposited on quartz plates by an evaporation-induced self-assembly (EISA) process using a dip coating method. The starting solution was prepared by mixing indium chloride, tin chloride, and CTAB dissolved in ethanol. Five to fifty mole percent Sn-doped ITO films were prepared by heat-treatment at 400 °C for 5 h. The structural, adsorptive, electrical, and optical properties of mesoporous ITO thin films were investigated. Results indicate that the mesoporous ITO thin films have an ordered two-dimensional hexagonal (p6mm) structure, with nanocrystalline domains in the inorganic oxide framework. The continuous thin films have highly ordered pore sizes (>20 Å), high Brunauer-Emmett-Teller (BET) surface area up to 340 m2/g, large pore volume (>0.21 cm3/g), outstanding transparency in the visible range (>80%), and show a minimum resistivity of ρ = 1.2 × 10−2 Ω cm.  相似文献   

17.
Gold nanoparticles (NPs) incorporated mesoporous silica thin films (MSTFs) of varied gold contents from 4.64 to 29.15 wt.% were synthesized through a refined chemical modification to the mesopore surface using different amounts of silane with amino end group. The microstructures of the composite thin films were characterized and the off-resonant third-order optical nonlinearities of the composite thin films were investigated by Z-scan technique at 1064 nm. The resultant composite thin films showed increased third-order optical nonlinear susceptibility (χ(3)) from 4.26 × 10−11 to 9.24 × 10−10 esu at increased gold contents. The dependence of χ(3) on gold content have been discussed, which can be described by an exponent function y = y0 + Aex/t when the gold contents of the composite thin films were below 30 wt.%.  相似文献   

18.
We have established a substantial enhancement of Kerr coefficients for 1150 nm cw He-Ne laser wavelength using BiB3O6 (BiBO) nanocrystallites (NC) incorporated into polymer-dispersed liquid crystal composites (PDLC). For this reason we have used 3% and 5.2% in weighting units of BiBO NC possessing sizes varying within the 60-90 nm. It was discovered that BiBO NC may be used for effective gain of Kerr electro-optical susceptibilities varying by the content of the NC at T = 77 K. Moreover, an increase of the Kerr coefficients correlates with decreasing dc-current under applied voltage. The maximally achieved value of the Kerr coefficients were equal to about 1.2·10− 9 m V− 2 (λ = 1150 nm) corresponding to BiBO content equal to about 3%. Such polymer nanocomposites may be considered as perspective materials for the electro-optical Kerr modulators.  相似文献   

19.
We studied the growth and electrical properties of single crystalline mixed (Nd1 − xGdx)2O3 (NGO) thin films and compared the results with those of the binary Gd2O3 and Nd2O3 thin films, respectively. Epitaxial ternary NGO thin films were grown on Si(100) substrates using modified solid state molecular beam epitaxy. The films were characterized physically using various techniques. The capacitance equivalent oxide thickness of a 4.5 nm NGO thin film extracted from capacitance-voltage (C-V) characteristics was 0.9 nm, which is lower than all values reported earlier for other crystalline oxides. The leakage current density and the density of interface traps were 0.3 mA/cm2 at |Vg − VFB| =  1 V and 1.4 × 1012/cm2, respectively. These excellent electrical properties of NGO thin films demonstrate that such ternary oxides could be one of the promising candidates for gate dielectrics in the upcoming generations of complementary metal oxide semiconductor (CMOS) devices.  相似文献   

20.
Ferroelectric Pb0.92La0.08Zr0.4Ti0.6O3 (PLZT) thin films were deposited on SrTiO3-buffered Si(001) substrate by on-axis radio frequency magnetron sputtering. X-ray diffraction analysis revealed epitaxial growth of monocrystalline PLZT films, with an (001) rocking curve full width at half maximum of ∼ 0.3°. φ-scans showed 45° in-plane orientation of the perovskite unit cell relative to that of silicon. The elemental composition of the thin film heterostructure was examined by Auger sputter depth profiling measurements. The recorded profiles suggest that the SrTiO3 buffer layer serves not only as a template for epitaxial growth, but also as a barrier suppressing Pb-Si interdiffusion between the PLZT layer and the Si substrate. The surface roughness of the PLZT layer was measured at ∼ 4 nm for films with ∼ 500 nm thickness. Wavelength dispersions for the refractive index (n) and the extinction coefficient (k) were obtained from spectroscopic ellipsometry measurements, with n ∼ 2.48 at the main communication wavelength λ = 1550 nm and k < 0.001 for λ > 650 nm. Recorded polarization vs. electric field loops for the PLZT epilayer, with a SrRuO3 electrode layer interposed between PLZT and SrTiO3, showed a remnant polarization Pr ≈ 40 µC/cm2 and coercive field Ec ≈ 100 kV/cm. These findings suggest that the sputter-deposited PLZT thin films retain the functional properties critical to ferroelectric and electro-optic device applications, also when integrated on a semiconductor substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号