首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyurethanes have proven durable materials for the manufacture of flexible trileaflet heart valves, during in vitro tests. The response of two polyurethanes of differing primary structure to parameters of blood compatibility has now been investigated, using an in vitro test cell. Platelet (beta-thromboglobulin) release, complement (C3a) activation, the activation of free plasma and surface-bound factor XII were studied using fresh, human blood (no anticoagulant) or citrated plasma in control and surface-modified polyurethane. Surface modifications were designed to affect material thrombogenicity and included covalent attachment of heparin, taurine, a platelet membrane glycoprotein fragment, polyethylene oxide (PEO), 3-aminopropyltriethoxysilane, and glucose or glucosamine. Unmodified control polyurethanes caused platelet release and complement activation. High molecular weight (2000 D) polyethylene oxide reduced platelet release slightly but only glucose attachment to the surface produced a significant reduction in platelet activation. All modifications reduced C3 activation compared with controls, but the greatest reduction was achieved with polyethylene oxide attachment or glycosylation. Most surface modifications were more activating of factor XII, both in plasma and on the material surfaces, than the control polyurethanes. Heparin and high molecular weight PEO produced the greatest activation of factor XII in the free plasma form, but low molecular weight PEO and glucosamine produced the greatest activation of surface-bound factor XIIa. The least activating surfaces, affecting both free plasma and surface-bound factor XIIa, were those treated with platelet membrane glycoprotein fragment and glucose. PEO surfaces performed relatively well, compared with controls and most surface modifications. The best overall surface, however, was the glucose-modified surface which was least activating considering all parameters of blood compatibility.  相似文献   

2.
Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.  相似文献   

3.
Poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) was grafted onto the surface of a silicon rubber (SR) membrane (pMPC-SR) by plasma induced grafted copolymerization (PIP). Argon plasma was used to activate the SR surfaces. Determination was also made of the influences of grafted copolymerization reaction time, reaction temperature, and monomer concentration on polymerization yield. The surface properties of SR were characterized by ATR-FTIR, ESCA, and SEM. In those analyses the ATR-FTIR spectra indicated that the pMPC grafted onto the SR surface at 1720 and 3300 cm(-1). The elemental composition and different carbon bindings on the surface of the SR were examined by ESCA. An increasing P1s/C1s value g was obtained in the grafted polymerization yield with a concentration of 0.05-0.5M of MPC in the isolated ethanol solution. The surface morphologies of pMPC-SR differed more than those of control and Ar plasma treated surfaces. The difference could have been caused by the homogeneous graft polymerization of pMPC onto the SR membrane. In the biological analyses, protein adsorption on pMPC-SR surfaces was reduced. The reduced level increased with an increase in the pMPC grafted amount. The epithelial cell attachment and growth onto these samples were suppressed. The blood compatibility for a series of pMPC-SR surfaces was examined by platelet adhesion. Blood platelet morphologies in contact with the high ratio of pMPC-SR surfaces were maintained, meaning that in this case the release reaction for platelets never occurred. Consequently, the high amount of pMPC-SR surface had excellent blood compatibility, further suggesting that prevention of adhesion, activation of platelets, and adsorption of blood protein could be achieved.  相似文献   

4.
The hypothesis that heparin-coated perfusion circuits reduce thrombin formation and activity; fibrinolysis; and platelet, complement, and neutrophil activation was tested in 20 consecutive, randomized adults who had cardiopulmonary bypass. Twenty identical perfusion systems were used; in 10, all blood-contacting surfaces were coated with partially degraded heparin (Carmeda process; Medtronic Cardiopulmonary, Anaheim, Calif.). All patients received a 300 U/kg dose of heparin. Activated clotting times were maintained longer than 400 seconds. Cardiopulmonary bypass lasted 36 to 244 minutes. Blood samples for platelet count, platelet response to adenosine diphosphate, plasma beta-thromboglobulin, inactivated complement 3b, neutrophil elastase, fibrinopeptide A, prothrombin fragment F1.2, thrombin-antithrombin complex, tissue plasminogen activator, plasminogen activator inhibitor-1, plasmin alpha 2-antiplasmin complex, and D-dimer were obtained at these times: after heparin was given, 5 and 30 minutes after cardiopulmonary bypass was started, within 5 minutes after bypass was stopped, and 15 minutes after protamine was given. After cardiopulmonary bypass, tubing segments were analyzed for surface-adsorbed anti-thrombin, fibrinogen, factor XII, and von Willebrand factor by radioimmunoassay. Heparin-coated circuits significantly (p < 0.001) reduced platelet adhesion and maintained platelet sensitivity to adenosine diphosphate (p = 0.015), but did not reduce release of beta-thromboglobulin. There were no significant differences between groups at any time for fibrinopeptide A, prothrombin fragment F1.2, or thrombin-antithrombin complex or in the markers for fibrinolysis: D-dimer, tissue plasminogen activator, plasminogen activator inhibitor-1, and alpha 2-antiplasmin complex. In both groups, concentrations of prothrombin fragment F1.2 and thrombin-antithrombin complex increased progressively and significantly during cardiopulmonary bypass and after protamine was given. Concentrations of D-dimer, alpha 2-antiplasmin complex, and plasminogen activator inhibitor-1 also increased significantly during bypass in both groups. Fibrinopeptide A levels did not increase during bypass but in both groups increased significantly after protamine was given. No significant differences were observed between groups for levels of inactivated complement 3b or neutrophil elastase. Radioimmunoassay showed a significant increase in surface-adsorbed antithrombin on coated circuits but no significant differences between groups for other proteins. We conclude that heparin-coated circuits used with standard doses of systemic heparin reduce platelet adhesion and improve platelet function but do not produce a meaningful anticoagulant effect during clinical cardiopulmonary bypass. The data do not support the practice of reducing systemic heparin doses during cardiac operations with heparin-coated extracorporeal perfusion circuitry.  相似文献   

5.
Deleterious effects of cardiopulmonary bypass (CPB) are partly sequelae of blood-foreign surface reactions. Coating the inner surfaces of CPB sets with heparin has been shown to decrease activation of humoral cascade systems. The aim of this study was to investigate whether the heparin-coated CPB sets influence adhesion of blood cells to surfaces of arterial filters during CPB. Thirty-one patients undergoing coronary artery bypass grafting were studied. In the control group (C) standard CPB sets and standard doses of heparin (300 IU/kg) were employed; in the HC (heparin-coated) group, heparin-coated CPB sets and reduced heparin doses (range, 150 to 225 IU/kg) were used. Two additional groups were also studied; group FC (coated filter), with standard CPB sets and heparin-coated arterial filters (heparin dose, 300 IU/kg), and group OC (uncoated filter), with heparin-coated CPB sets and standard arterial filters (heparin dose, 300 IU/kg). The inner surfaces of the arterial filters were examined after CPB with scanning electron microscopy. Scanning electron microscopy demonstrated almost clean surfaces in heparin-coated filters even when other parts of the circuit were uncoated. Using an arbitrary adhesion score, significant differences between the groups were noted in the adhesion grade; it was lowest in group HC (2.2 +/- 0.27 [mean +/- standard error of the mean]) versus group C (5.4 +/- 0.53; p < 0.001). In group FC it was marginally higher than in group HC but almost significantly lower than in group OC (2.6 +/- 0.68 versus 5.4 +/- 0.81; p = 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The activation of rabbit platelets by rabbit plasma clots, and the inhibition of clot-associated thrombin by heparin:antithrombin III, recombinant hirudin (rHV2Lys47) and argatroban, a low molecular weight thrombin inhibitor, was studied. Plasma clots caused the aggregation of platelets suspended in a plasma-free medium as assessed by single platelet counting, and by scanning electron microscopy (platelet aggregates present on the clot surface). Platelet aggregation, induced by clot-associated thrombin, was inhibited by argatroban with an IC50) of 14 +/- 3 nM compared to an IC50) of 12 +/- 2 nM when human thrombin in solution titrated to give the same decrease in the platelet count as plasma clots was used. rHV2Lys47 also inhibited aggregation induced by clot-associated thrombin with an IC50 of 1.6 +/- 0.4 nM compared to 1.6 +/- 0.5 nM with thrombin in solution. Heparin was less active against clot-associated thrombin (IC50) = 69 +/- 9 mU/ml) than against thrombin in solution (IC50 = 15 +/- 5 mU/ml). This study shows that plasma clot-bound thrombin activates platelets and that direct-acting thrombin inhibitors such as argatroban and rHV2Lys47 are more effective than heparin:antithrombin III in inhibiting this phenomenon.  相似文献   

7.
The uptake and activation of FXII from blood plasma was studied in small-diameter polyethylene tubing, surface-modified by end-point immobilization of heparin. Two preparations of heparin were used to modify the contact-activating properties of the plastic tubing: unfractionated, functionally active heparin and low-affinity heparin, lacking the specific antithrombin-binding sequence and virtually devoid of anticoagulant activity. The uptakes of FXII on the two heparin surfaces were similar. No activated FXII could be demonstrated on the unfractionated heparin surface, whereas on the low-affinity heparin surface nearly all FXII underwent spontaneous activation. The suppression of FXII activation on the unfractionated heparin surface was investigated by using plasma depleted of antithrombin, complement C1 esterase inhibitor, or both. The removal of antithrombin resulted in extensive activation of FXII, whereas the depletion of C1 esterase inhibitor had only a minor effect. Experiments with recalcified plasma showed rapid clot formation during exposure to the low-affinity heparin surface. After depletion of antithrombin, but not complement C1 esterase inhibitor, the recalcified plasma clotted in contact with the unfractionated heparin surface as well. We conclude that antithrombin and the antithrombin-binding sequence in the surface-immobilized heparin are essential for the prevention of surface activation of FXII and triggering of the intrinsic coagulation system.  相似文献   

8.
Pentosan polysulfate (PPS) is a highly sulfated semisynthetic polysaccharide possessing a higher negative charge density and degree of sulfation than heparin. Like other glycosaminoglycans, the structural and chemical properties of PPS promote binding of the drug to the endothelium. Glycosaminoglycans, including heparin, inhibit complement activation independent of an action on the coagulation system. This ability provides a compelling argument for the implementation of this class of compounds in experimental models of cellular injury mediated by complement. The objective of this study was to examine whether PPS could reduce myocardial injury resulting from activation of the complement system. We used the rabbit isolated heart perfused with 4% normal human plasma as a source of complement. Hemodynamic variables were obtained before addition of PPS (0.03 01 mg/ml) and every 10 min after the addition of human plasma. Compared with vehicle-treated hearts, left ventricular end-diastolic pressure was improved at the conclusion of the 60-min protocol in hearts treated with PPS (58.9 +/- 13.6 vs. 15. 2 +/- 4.8 mm Hg). Further evidence as to the protective effects of PPS was demonstrated by decreased creatine kinase release compared with vehicle (86.5 +/- 28.5 U/l vs. 631.0 +/- 124.8 U/l). An enzyme-linked immunosorbent assay for the presence of the membrane attack complex in lymph and tissue samples demonstrated decreased membrane attack complex formation in PPS-treated hearts, which suggests inhibition of complement activation. This conclusion was supported further by the ability of PPS to inhibit complement-mediated red blood cell lysis in vitro. The results of this study indicate that PPS can reduce tissue injury and preserve organ function that otherwise would be compromised during activation of the human complement cascade.  相似文献   

9.
A biodegradable polymer, poly(D,L-lactide-co-glycolide) RESOMER RG756, was modified by surface immobilization of recombinant hirudin (r-Hir) with glutaraldehyde as coupling reagent to improve the blood contacting properties of the polymer. The activity of immobilized hirudin on the polymer was estimated by a chromogenic assay to about 2.5 ATU r-Hir cm-2. The improvement of the haemocompatibility of the modified RG756 was evaluated in terms of platelet adhesion/activation, whole blood clotting times and clot formation rate. Fluorescence microscopy revealed that surface modification with r-Hir resulted in decreased platelet adhesion and activation. An ELISA for P-selectin, a marker of platelet activation, was used to confirm this result. Clotting time experiments demonstrated significantly prolonged non-activated partial thromboplastin times, and a decreased clot formation rate of whole blood in contact with r-Hir modified RG756 compared with the plain polymer. Comparison of immobilized r-Hir with bound heparin yielded equivalent improvement of blood-contacting properties of the investigated polymers. These in vitro investigations indicate that the immobilization of r-Hir on RG756 is a useful method to improve the blood contacting properties of polylactides/polyglycolides and other polymers as well.  相似文献   

10.
alpha 1-Acid glycoprotein (AAG) obtained from ascites and/or pleural fluids exhibited anti-heparin effects in platelet-poor plasma when evaluated by activated partial thromboplastin (Activated Thrombofax Reagent) and heparin-thrombin clotting time assays. An anti-heparin effect for AAG was also demonstrable in platelet-rich plasma (PRP) challenged with thrombin, but only over a limited range of heparin concentrations; at elevated heparin concentrations, and only in the presence of AAG, both platelet aggregation and clot formation were substantially inhibited. However, no detectable anti-heparin effect was observed following challenge of PRP with Activated Thrombofax Reagent; indeed, the anti-coagulant effect of heparin appeared synergistically amplified in these systems containing AAG, and AAG exhibited platelet pro-aggregate and pro-coagulant properties in the absence of heparin. The platelet pro-aggregating activity of AAG, though independent of heparin, appeared to require the onset of the coagulation cascade prior to the generation of thrombin; in the absence of such initiation, AAG remained a potent inhibitor of platelet activation.  相似文献   

11.
AIMS: Platelet activation may be a determinant of thrombotic and restenotic complications following intracoronary stenting. In order to measure the effect of stenting on platelet activation antigen expression we used whole blood flow cytometry in 18 patients undergoing Palmaz-Schatz stenting (treated with full anticoagulation) and compared these with a group of 18 patients undergoing elective angioplasty. The effects of low molecular weight heparin and unfractionated heparin on platelet behaviour were also studied, both in vitro and in vivo to determine the contribution of prolonged heparin therapy to platelet activation following stenting. METHODS AND RESULTS: Fibrinogen binding to activated GPIIb-IIIa, and surface expression of P-selectin, GPIb and GPIIb-IIIa antigens were measured in unstimulated peripheral blood samples (rest) and on stimulation with adenosine diphosphate (0.1-10 micromol x 1(-1)) and thrombin (0.02-0.16 U x ml(-1)). No changes were seen in resting samples following angioplasty or stenting. Agonist responsiveness was unaltered after angioplasty, but in stented patients antigen expression in response to thrombin was significantly reduced (P< or =0.04), whilst the adenosine diphosphate response was significantly increased (P=0.01). Similar effects were observed in patients with unstable angina treated with either low molecular weight heparin or unfractionated heparin in vivo. In vitro, both unfractionated and low molecular weight heparin inhibited thrombin-induced platelet activation, but stimulation of adenosine diphosphate responses was more marked with unfractionated than low molecular weight heparin. CONCLUSIONS: There was a significant increase in platelet responsiveness to adenosine diphosphate following intracoronary stenting in patients treated with conventional anticoagulants. This was probably a consequence of treatment with heparin. Activation of platelets by heparin may explain the increased rate of stent thrombosis in patients treated with anticoagulant therapy. Low molecular weight heparins stimulate platelets less than unfractionated heparin.  相似文献   

12.
We evaluated the plasma concentrations of soluble adhesion molecules and platelet-derived microparticles (PMP) in patients with non-insulin dependent diabetes mellitus (NIDDM) and studied the effect of cilostazol on PMP generation. There were differences in the levels of soluble adhesion molecules between NIDDM patients (N = 43) and the control subjects (N = 30) (soluble thrombomodulin: 11.5+/-5.3 vs. 7.0+/-1.2 TU/ml, p<0.0001; soluble vascular cell adhesion molecule-1: 708+/-203 vs. 492+/-113 ng/dl, p<0.0001; soluble intercellular cell adhesion molecules- 1: 274+/-65 vs. 206+/-48 ng/dl, p<0.0001; soluble P-selectin: 194+/-85 vs. 125+/-43 ng/dl, p<0.0001). There were also differences in the levels of PMP and platelet activation markers between NIDDM patients and the controls (PMP: 943+/-504 vs. 488+/-219/10(4) plt, p<0.0001; platelet CD62P: 9.2+/-4.6 vs. 4.4+/-4.3%, p<0.001; platelet CD63: 10.2+/-4.5 vs. 4.5+/-3.3%, p<0.0001; platelet annexin V: 9.1+/-3.9 vs. 5.3+/-3.8%, p<0.001). To study the release of PMP into plasma, a modified cone-and-plate viscometer was used. Increased release of PMP from platelets was observed in diabetic plasma compared to normal plasma under high shear stress conditions (2,672+/-645 vs. 1,498+/-386/10(4) plt, p<0.05). Therefore, one cause of PMP elevation in NIDDM may be high shear stress. The levels of PMP, activated platelets, and soluble adhesion molecules all decreased significantly after treatment with cilostazol. These results suggest that cilostazol may be useful for the inhibition of both PMP-dependent and -independent vascular damage in NIDDM.  相似文献   

13.
A wettability gradient was prepared on lowdensity polyethylene (PE) sheets by treating them in air with a corona from a knife-type electrode the power of which increased gradually along the sample length. The PE surfaces oxidized gradually with the increasing corona power and a wettability gradient was created on the surfaces, as evidenced by the measurement of water contact angles, Fourier transform infrared spectroscopy in the attenuated total reflectance mode, and electron spectroscopy for chemical analysis. The wettability gradient surfaces prepared were used to investigate the adhesion behavior of platelets in the absence and presence of plasma proteins in terms of the surface hydrophilicity/hydrophobicity of polymeric materials. The platelets adhered to the wettability gradient surfaces along the sample length were counted and examined by scanning electron microscopy (SEM). It was observed that the platelet adhesion in the absence of plasma proteins increased gradually as the surface wettability increased along the sample length. The platelets adhered to the hydrophilic positions of the gradient surface also were more activated (possessed more pseudo pods as examined by SEM) than on the more hydrophobic ones. However, platelet adhesion in the presence of plasma proteins decreased gradually with the increasing surface wettability; the platelets adhered to the surface also were more activated on the hydrophobic positions of the gradient surface. This result is closely related to plasma protein adsorption on the surface. Plasma protein adsorption on the wettability gradient surface increased with the increasing surface wettability. More plasma protein adsorption on the hydrophilic positions of the gradient surface caused less platelet adhesion, probably due to platelet adhesion inhibiting proteins, such as high-molecular-weight kininogen, which preferably adsorbs onto the surface by the so-called Vroman effect. It seems that both the presence of plasma proteins and surface wettability play important roles for platelet adhesion and activation.  相似文献   

14.
Membranes developed from poly(vinyl alcohol) (PVA) have superior permeability because of the highly hydrophilic character of PVA. However, its blood compatibility needs to be further improved. For this we have developed acetylsalicylic acid (ASA, aspirin) loaded PVA membranes. It seems that the slow release of aspirin from the membrane provides a surface concentration of aspirin sufficient for partially inhibiting platelet adhesion. PVA membrane with 531 micrograms cm-2 of ASA loaded, may be selected for hemodialysis applications. This may help to reduce the amount of heparin infused during hemodialysis, thereby reducing the side-effects associated with the systemic administration of heparin.  相似文献   

15.
In this work the hypothesis that a mature, cross-linked fibrin clot, pre-formed on a biomaterial, may be relatively nonthrombogenic was investigated. A cross-linked fibrin layer was formed on polyethylene which had been precoated with thermally denatured fibrinogen. Plasma protein adsorption and platelet interactions with the cross-linked fibrin and denatured fibrinogen surfaces were investigated. The adsorption of albumin, fibrinogen, and fibronectin from plasma was measured. For all three proteins, the cross-linked fibrin surface exhibited much higher levels of adsorption than either the thermally denatured fibrinogen or the polyethylene surface. Vroman peaks were observed for fibrinogen and fibronectin on polyethylene but not on the cross-linked fibrin and thermally denatured fibrinogen materials. In dilute plasma the thermally denatured fibrinogen surface showed considerable resistance to protein adsorption. However, at plasma concentrations greater than about 5% normal, this protein resistance was apparently lost. Platelet interactions (adhesion and release of granule constituents from adherent platelets) using suspensions of washed platelets in the presence of red cells were investigated at shear rates of 50, 300, and 525 s(-1) using a cone and plate apparatus. The levels of platelet adhesion on the different surfaces were in the order: adsorbed fibrinogen > cross-linked fibrin > thermally denatured fibrinogen = polyethylene. Platelets on the cross-linked fibrin surface also showed high levels of release indicating significant platelet activation. Scanning electron microscopic observations were in agreement with the platelet adhesion and release data, showing only a few (but well-spread) adherent platelets on the cross-linked fibrin surface.  相似文献   

16.
We prepared polymers having a phospholipid polar group, poly [omega-methacryloyloxyalkyl phosphorylcholine (MAPC)-co-n-butyl methacrylate(BMA)], as new biomedical materials and evaluated their blood compatibility with attention to protein adsorption and platelet adhesion. The total amount of proteins adsorbed on the polymer surface from human plasma was determined, and the distribution of adsorbed proteins on the plasma-contacting surface was analyzed. The amount of proteins adsorbed on every poly (MAPC-co-BMA) was small compared with that observed on polymers without the phospholipid polar group. However, there was no significant difference in the amount of adsorbed proteins on the poly(MAPC-co-BMA) even when the methylene chain length between the phospholipid polar group and the backbone in the MAPC moiety was altered. Platelet adhesion on the polymer surface from a platelet suspension in a buffered solution was evaluated with and without plasma treatment on the surface. When a rabbit platelet suspension was brought into contact with the poly(BMA) surface after treatment with plasma, many platelets adhered and aggregated. However, a reduced amount of platelet adhered on the poly(BMA) was found in the case of direct contact with the platelet suspension. On the other hand, the poly(MAPC-co-BMA)s could inhibit platelet adhesion under both conditions. Based on these results, it can be concluded that the proteins adsorbed on the surface play an important role in determining the platelet adhesion and suppression of the protein adsorption on the surface, which is one of the most significant ways of inhibiting platelet adhesion.  相似文献   

17.
Functional group gradients were prepared on low-density polyethylene (PE) sheets. The surface density of grafted functional groups was gradually changed along the sample length by way of corona discharge treatment with gradually increasing power following graft copolymerization of acrylic acid (AA), sodium p-styrene sulfonate (NaSS), or N,N-dimethyl aminopropyl acrylamide (DMAPAA). AA and NaSS are negatively chargeable and DMAPAA is positively chargeable in phosphate-buffered saline or plasma solution at pH 7.3-7.4. The prepared functional group gradient surfaces were characterized by measurement of the water contact angle, by electron spectroscopy for chemical analysis, and by Fourier transform infrared spectroscopy in the attenuated total reflectance mode. All these measurements indicated that the functional groups were grafted onto the PE surfaces with gradually increasing density. The platelets adhered to the functional group gradient surfaces along the sample length were counted and observed by scanning electron microscopy. It was observed that the platelet adhesion to the gradient surfaces decreased gradually with the increasing surface density of functional groups. This may be related to the hydrophilicity of the surfaces. The DMAPAA-grafted surface showed a large amount of platelet adhesion, probably due to its positive charge character, while the AA-grafted surface, which is charged negatively, showed poor platelet adhesion. However, the NaSS-grafted surface, which is also charged negatively, showed a relatively large amount of platelet adhesion. This may be associated with the existence of an aromatic ring close to the ionizable group in NaSS. It seems that surface functional groups and their charge character, as well as wettability, play important roles for platelet adhesion.  相似文献   

18.
Heparin-coating improves the biocompatibility of blood contacting artificial surfaces. This led us to investigate the impact of heparin-coating (Carmeda AB, Stockholm) of polymetylmetacrylate on the expression of monocyte tissue factor procoagulant activity (TF-PCA) by surface adhesion. Also, the anticoagulant effect of heparin-coating in the presence or absence of adherent procoagulant monocytes was assessed. This is of particular interest, since activation of extrinsic coagulation by adherent monocyte TF-PCA may play a significant role in thrombin generation during extracorporeal circulation. Monocytes exposed to heparin-coated or non-coated polymetylmetacrylate expressed TF-PCA. The heparin coat did not affect the rate of monocyte adhesion. However, heparin-coating reduced the induction of TF-PCA of non-adherent and adherent monocytes by 17 and 33% (p <0.001 and p <0.0003), respectively. Heparin-coating in the absence of monocytes, totally inhibited the clotting of recalcified plasma (p <0.003). In contrast, in the presence of adherent monocytes expressing TF-PCA, surface-bound heparin did not inhibit clotting. However, inclusion of heparin in a plasma concentration of 8.9 IU/ml totally inhibited the activation of coagulation. It is apparent that heparin-coating of an artificial surface is an efficient means to inhibit coagulation of recalcified plasma, but much less so when procoagulant monocytes are adherent to the coated surface. The present findings are of clinical relevance, since monocytes will adhere to blood contacting surfaces of extracorporeal circuits or to implanted vascular prostheses and subsequently express TF-PCA, and this may promote thromboembolism.  相似文献   

19.
Subendothelium of rabbit aorta and fibrillar collagen were exposed to citrated human or rabbit blood which was circulated through a perfusion chamber under flow conditions similar to those found in arteries. The resulting platelet adhesion and subsequent formation of platelet microthrombi on the exposed surfaces were measured in 0.8 mum thich sections by a morphometric technique using light microscopy. Removal of plasma ADP by the substrate-enzyme combination CP-CPK (creatine phosphate-creatine phosphokinase; 3 mM and 90 U/ml blood) did not affect the initial attachment and spreading of platelets on subendothelium, whereas platelet thrombus formation was strongly inhibited. On free collagen fibrils CP-CPK was much less inhibitory on platelet thrombus formation but platelet adhesion again was not affected. It is concluded that platelet aggregation induced by thrombogenic surfaces in the presence of arterial blood flow is at least partially governed by ADP released from adhering platelets. Platelet adhesion to the examined surfaces, however, does not seem to be mediated by plasma ADP.  相似文献   

20.
Surface plasmon resonance (SPR) was used as an affinity biosensor to determine absolute heparin concentrations in human blood plasma samples. Protamine and polyethylene imine (PEI) were evaluated as heparin affinity surfaces. Heparin adsorption onto protamine in blood plasma was specific with a lowest detection limit of 0.2 U/ml and a linear window of 0.2-2 U/ml. Although heparin adsorption onto PEI in buffer solution had indicated superior sensitivity to that on protamine, in blood plasma it was not specific for heparin and adsorbed plasma species to a steady-state equilibrium. By reducing the incubation time and diluting the plasma samples with buffer to 50%, the non-specific adsorption of plasma could be controlled and a PEI pre-treated with blood plasma could be used successfully for heparin determination. Heparin adsorption in 50% plasma was linear between 0.05 and 1 U/ml so that heparin plasma levels of 0.1-2 U/ml could be determined within a relative error of 11% and an accuracy of 0.05 U/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号