首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
高炉富氧喷煤是增产节焦的有效途径,实现超量喷吹煤粉,关键是煤粉的燃烧问题。本文针对富氧喷煤并用循环炉顶煤气来控制理论燃烧温度的炼铁工艺,建立了适用于高炉直吹管风口区的煤粉燃烧气化数学模型,经实验室模拟燃烧实验证明,该模型基本上是合理的。用数学模型对不同操作条件下的煤粉燃烧过程作了模拟计算,并以实验考察了喷吹方式对燃烧过程的影响。结果表明:用循环炉顶煤气来控制理论燃烧温度,能满足高炉冶炼的要求;增加喷煤量,将使煤粉燃烧率下降,进入回旋区内未燃尽煤粉量急剧增多,要实现超量喷吹煤粉,应选用燃烧性能好的烟煤作为喷吹用煤,适当降低煤粉的粒度,选择适宜的喷吹角度。  相似文献   

2.
高炉喷煤是降低高炉炼铁生产成本的重要措施之一,根据某高炉现场原料在实验室条件下的煤粉燃烧性试验,以现场煤种、粉气比的煤粉燃烧率为基准,考察了烟煤配比、富氧对煤粉燃烧率的影响,试验结果表明:4种无烟煤中,S2煤是最佳混合喷吹的无烟煤;增加烟煤配比和采用富氧措施,可使煤粉的燃烧率提高 。当S1和S2混合煤中烟煤S1配比为67%,富氧3%时,喷煤比可比基准提高37 kg/t(HM)。  相似文献   

3.
刘云彩 《炼铁》1994,13(2):6-12
煤粉燃烧与利用及喷煤后高炉顺行是提高喷煤量的主要环节。本文对煤粉粒度、风口均匀喷吹、富氧(包括氧煤喷枪)、风口前适宜理论燃烧温度、料柱透气性(煤气分布与炉料运动)、煤的质量、喷煤装备等进行了论述,并就喷煤极限和发展前景提出看法。  相似文献   

4.
高炉下部气固湍流和煤粉燃烧的数值模拟与优化研究   总被引:1,自引:0,他引:1  
高炉喷吹煤粉时,由于煤粉的不完全燃烧,在回旋区处会产生未燃煤粉,影响高炉的透气性。建立了气固两相湍流和煤粉燃烧的三维数学模型,并且验证了该模型的可靠性。用所建模型对由直吹管、风口、回旋区和焦炭床构成的高炉下部区域进行了喷吹煤粉流动与燃烧现象的模拟研究。模拟结果揭示了高炉炉内气固流动和煤粉燃烧的基本性质和特点;通过正交试验方法研究不同操作因素对评价指标煤粉燃尽率的影响,得到4个操作因素对燃尽率的影响程度依次分别为喷煤量、富氧率、鼓风量和鼓风温度。而工况(喷煤量1 25kg/t,鼓风量1 950m3/min,鼓风温度1 523K,富氧率5.0%)为最佳优化工况,可实现提高喷煤量和煤粉燃尽率的效果。  相似文献   

5.
高炉喷吹焦炉煤气可以充分发挥氢还原的作用,实现高炉冶炼的低碳绿色发展。为了分析高炉喷吹焦炉煤气的减排能力,以钒钛磁铁矿冶炼高炉的现场生产数据和炉内理化反应为基础建立质能平衡模型,研究焦炉煤气喷吹量对风口理论燃烧温度和炉顶煤气CO2排放量的影响;建立一定约束条件下喷吹焦炉煤气的操作窗口,讨论其降碳减排能力。研究结果表明,在一定的富氧率、焦比、煤比和风温下,随着焦炉煤气喷吹量的增加,风口理论燃烧温度和炉顶煤气CO2排放量均降低。当风温和煤比一定时,通过提高富氧率可以实现喷吹焦炉煤气高炉的热量补偿。随着焦炉煤气喷吹量的增加,富氧率提高、焦比降低。不喷吹焦炉煤气,钒钛磁铁矿高炉在富氧率为3%、焦比为380.0 kg/t(Fe)、煤比为130 kg/t(Fe)、风温为1 200℃操作条件正常运行时,其风口理论燃烧温度为2 075℃、炉顶煤气温度最低为120℃;当焦炉煤气喷吹量为55 m3/t(Fe)时,可以维持与不喷吹焦炉煤气时相同的理论燃烧温度和炉顶煤气温度,相应的富氧率为5.63%、焦比为371 kg/t,炉顶CO2...  相似文献   

6.
运用热力学软件FactSage,针对攀钢4号高炉,研究了富氧和喷煤的变化对高炉风口回旋区特征的影响,主要是对理论燃烧温度以及煤气成分的影响。其结果表明:在攀钢目前的冶炼条件下,4号高炉的喷煤比可以继续提高至185 kg/t,但在245 kg/t时达到极限。提高喷煤比和富氧率均可提高回旋区的温度,但喷煤比的效果会更加显著;喷煤比和富氧的变化对煤气成分影响也各不相同。  相似文献   

7.
本文从煤的燃烧性能和大量喷煤对高炉冶炼的影响,探讨高炉大量喷煤的可能性。在高炉风口燃烧带的高温下,煤粉不仅与氧燃烧,而且被二氧化碳气化。不必要求氧气过剩系数达到完全燃烧的要求。为维持风口前一定的理论燃烧温度,应采取提高风温并适当富氧。大量喷煤对高炉高温区热平衡、热流比等影响不大,不会影响高炉顺行。  相似文献   

8.
为改善高炉冶炼效果,采用两段卧式燃烧炉模拟实际高炉喷煤工艺条件,系统研究了不同条件下富氧喷煤对煤粉燃烧过程的影响.在热风富氧的条件下,单种煤和混合煤的燃烧率随富氧率的增加都有提高,而且无烟煤燃烧率的提高幅度略高于烟煤. 缩小煤粉粒度、提高热风温度都有利于煤粉燃烧率的提高,但在鼓风富氧率比较高和煤粉粒度较细小时,煤粉粒度的变化对煤粉燃烧率的影响比较小,混合煤粉的燃烧率随热风温度升高而提高的幅度也略微下降.  相似文献   

9.
在高炉解剖的研究工作中,通过观测、采样、检验等工作,对喷吹煤粉的高炉进行了初步研究,借以了解煤粉喷入高炉后,在风口区的燃烧状况及其对冶炼的影响.1. 研究过程和方法1.1 停炉前的测试为研究喷煤进程,于10月1日开始喷煤,只2号风口喷,喷煤量为100kg/h.于15日起2号、4号风口喷,喷煤量为150kg/h.解剖停炉前45min加大喷吹量.喷吹所用煤种为京西无烟煤,煤粉由试验高炉小球磨机自制,筛分组成及水分测定结果列于表1.  相似文献   

10.
为了研究富氢气体进行高炉喷吹对于冶炼工况的影响,建立高炉喷吹富氢气体的能质平衡模型,研究了天然气、焦炉煤气、炉顶循环煤气喷吹量对燃料比、直接还原度、炉腹煤气量、氢利用率、炉腹煤气量以及CO2排放量的影响。对风口理论燃烧温度的计算方法进行修正,将原燃料灰分吸热、未燃烧煤粉吸热、甲烷分解吸热等因素考虑在内,计算结果更精确。富氢气体喷吹可不同程度地降低直接还原度,发展间接还原,减少燃料消耗。当富氧率和焦比不变时,天然气对于直接还原度、风口焦炭质量、理论燃烧温度的影响最大,焦炉煤气其次,循环煤气最小。天然气、焦炉煤气、循环煤气喷吹量每提高10 m3,直接还原度分别降低0.014、0.009、0.002 4,风口燃烧焦炭量分别增加3.22、2.01、0.55 kg,理论燃烧温度分别增加20、14.33、10.17℃。高炉喷吹富氢气体后高炉CO2产生量和排放量减少,其中天然气喷吹的CO2减排效果最显著,与基准期相比,喷吹60 m3天然气时CO2排放量减少了9.46%。  相似文献   

11.
田国  高成康  张溪溪  李晓军 《中国冶金》2022,32(10):111-120
针对钢铁生产全流程产生的NOx造成的环境污染问题,依据NOx生成机理及元素流分析方法,建立钢铁生产全流程氮素流分析模型。应用该模型,以某典型钢铁企业实际生产数据为样本,分析钢铁联合企业的氮元素流动特征,讨论钢铁生产全流程中排放的含氮污染物及废气NOx的产生、脱硝及排放情况。研究结果表明,钢铁企业输入的氮素主要来源于高炉鼓风和各工序燃烧所需的空气(99.655%),输出的氮素主要以N2形式(82.917%)排放至大气,全流程内的氮素主要以煤气和工序产品形式循环;钢铁企业排放的含氮污染物以废气NOx(97.982%)为主,高炉炼铁工序废气NOx排放量最高;钢铁企业产生的废气NOx主要来源于焦炭(56.84%)和煤炭(28.91%),其中24.23%的NOx经脱硝后转化为N2排放至大气。对钢铁生产全流程氮素流及含氮污染物的排放、控制及相关政策开展研究,提出合理建议,对中国环境保护和钢铁行业的绿色发展具有重要意义。  相似文献   

12.
田国  高成康  张溪溪  李晓军 《中国冶金》2006,32(10):111-120
针对钢铁生产全流程产生的NOx造成的环境污染问题,依据NOx生成机理及元素流分析方法,建立钢铁生产全流程氮素流分析模型。应用该模型,以某典型钢铁企业实际生产数据为样本,分析钢铁联合企业的氮元素流动特征,讨论钢铁生产全流程中排放的含氮污染物及废气NOx的产生、脱硝及排放情况。研究结果表明,钢铁企业输入的氮素主要来源于高炉鼓风和各工序燃烧所需的空气(99.655%),输出的氮素主要以N2形式(82.917%)排放至大气,全流程内的氮素主要以煤气和工序产品形式循环;钢铁企业排放的含氮污染物以废气NOx(97.982%)为主,高炉炼铁工序废气NOx排放量最高;钢铁企业产生的废气NOx主要来源于焦炭(56.84%)和煤炭(28.91%),其中24.23%的NOx经脱硝后转化为N2排放至大气。对钢铁生产全流程氮素流及含氮污染物的排放、控制及相关政策开展研究,提出合理建议,对中国环境保护和钢铁行业的绿色发展具有重要意义。  相似文献   

13.
氯对高炉喷吹煤粉燃烧过程的影响   总被引:1,自引:0,他引:1  
氯对高炉喷吹煤粉燃烧过程的影响与氯在煤粉中的赋存状态有关。当煤粉中的氯以C1-离子形态与金属离子形成化合物的状态存在时,煤粉中的氯则会抑制煤粉在高炉风口区域的燃烧过程。当煤粉中氯以HCl的形式存在时,煤粉中的氯则会改善煤粉在高炉风口区域的燃烧过程。在高炉喷吹煤粉燃烧过程中,17%左右的氯进入未燃煤粉中,进入到高炉煤气中的氯为83%左右。  相似文献   

14.
长钢高炉喷煤系统主要由备煤系统、制粉系统、喷吹系统和向8#高炉输煤的管道组成,总结了高炉喷煤技术的进步.通过对制粉设备、喷吹设备以及煤种选择、高炉操作等方面的探索和改进,重点解决了制约煤粉产量、输送和风口前燃烧状况的难题,在远距离输送和浓相输送喷吹方面取得了突破性进展,实现了1 600m远距离输送,中间无加压装置,浓相输送固气比达到80 kg/m3.4座高炉煤比均达到200 kg/t,并且稳定保持在190 kg/t以上.  相似文献   

15.
The process of pulverized coal combustion inside the tuyere and raceway plays a very important role in the performance of a blast furnace. A three‐dimensional multiphase CFD model using Eulerian approach has been developed to simulate the coal devolatilization and combustion process inside tuyere and raceway. The velocity field, temperature distribution, and combustion characteristics have been determined in details and the effect of tuyere diameter on the pulverized coal combustion process has been predicted. Numerical results show that the pulverized coal combustion process displays different characteristics when the tuyere diameter changes. For a bigger diameter tuyere, there is more coal devolatilization, and combustion occurs inside the tuyere, which results in a better combustion condition compared to smaller tuyere diameters. The gas temperature distributions inside the raceway are dependent on the tuyure diameter; the temperature for the large size tuyere is higher than that of the small one. The coal burnout changes from 85.3% to 60.0% when the tuyere diameter reduces from 0.165m to 0.146 m.  相似文献   

16.
 钢铁工业是中国制造业中碳排放量最高的行业,碳排放占全国碳排放总量的15%左右。高炉是钢铁工业碳消耗量最大的工序,碳消耗占钢铁流程总碳消耗的70%以上,减少高炉冶炼碳消耗是降低钢铁工业碳排放的最有效措施。高炉喷吹富氢气体不但可以提高冶炼效率,减少污染物排放,而且可以减少焦炭或煤粉消耗,从源头上降低高炉冶炼碳消耗,从而减少碳排放。以山西晋南钢铁两座1 860 m3高炉风口喷吹富氢气体工业化生产数据为例,详细研究了高炉喷吹富氢气体对燃料比、风口理论燃烧温度、炉腹煤气量、H2利用率以及CO2排放量的影响。结果表明,喷吹富氢气体可以显著降低高炉固体燃料消耗,在吨铁富氢气体喷吹量为65 m3条件下,富氢气体与固体燃料的置换比为0.49 kg/m3;风口喷吹富氢气体降低了风口理论燃烧温度,吨铁每喷吹1 m3富氢气体,风口理论燃烧温度降低约1.5 ℃,高炉鼓风量和炉腹煤气量都少量降低;喷吹富氢气体以后,炉内H2的利用率平均为37.3%,CO的利用率约为43.2%;吨铁CO2排放量可以降低80 kg左右,高炉CO2排放降低了5.6%,取得了较好的经济、环境和减污降碳效果。  相似文献   

17.
 根据承钢高炉冶炼条件,以其高炉喷吹煤粉作为试验原料,利用煤粉燃烧炉模拟现场高炉风口区域煤粉的燃烧过程,探讨加入含钛炉渣稀释剂CaF2和MgO后,对煤粉燃烧性能的影响,并结合扫描电镜(SEM)观察未燃煤粉颗粒表面结构的变化。试验结果表明,煤粉中添加CaF2后燃烧率有所提高,但提高幅度不大,SEM图未燃煤粉的颗粒减小,这说明CaF2对高炉内煤粉的燃烧有一定的促进作用;添加MgO后煤粉燃烧率明显提高,当添加MgO质量分数为1.20%时,煤粉燃烧率提高了12.41%,此时未燃煤粉SEM图平均粒径为4.30 μm,比未加入稀释剂未燃煤粉的粒径小5.48 μm,并且组织颗粒的大小及分布比较均匀,综合考虑炉渣稀释剂MgO对承钢含钛炉渣的稀释作用和对高炉内煤粉燃烧的影响,含钛炉渣稀释剂MgO的最佳添加质量分数为1.20%。  相似文献   

18.
炉顶煤气循环-氧气鼓风高炉炼铁新技术的工艺特点决定了煤粉在其回旋区内的燃烧条件与传统高炉相比将发生很大变化.本文建立了氧气高炉直吹管—风口—回旋区下部煤粉流动和燃烧的数学模型,研究了入口布置方式、氧含量、循环煤气温度以及H2O和CO2含量对煤粉燃烧的影响.模拟结果表明:三种引入方式中,假想的循环煤气和氧气混合进入方式明显优于循环煤气和氧气单独进入方式.当氧的体积分数由80%增加到90%,相应的煤粉燃尽率由87.525%提高到93.402%.循环煤气温度对煤粉燃尽率的影响并不显著.循环煤气中H2O和CO2的体积分数提高5%,风口轴线上气体的最高温度分别降低124 K和113 K.   相似文献   

19.
王瀚  王静松  彭星 《中国冶金》2021,31(5):19-25
为降低高炉炼铁中固体碳耗、高效利用冶金高温副产煤气,提出高炉富氧喷吹还原性气体工艺流程,建立基于物料平衡与热平衡的高炉数学模型,并修正了理论燃烧温度计算公式.应用该模型分别对传统高炉、炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程进行技术参数分析.结果表明,炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程中,...  相似文献   

20.
为了探究价格较为廉价并且燃烧性能良好的燃料(兰炭)在高炉直吹管、风口、回旋区内燃烧产生的温度、气体成分以及燃料的燃尽率分布情况,根据高炉的实际尺寸,建立了三维物理模型并进行模拟计算。模拟结果表明,当单独喷吹烟煤、兰炭时,回旋区内的温度均为先升高到最高温度后缓慢降低,风口中心线上最高温度分别为2 447、2 415 K。然而,当单独喷入无烟煤、焦化除尘灰(CDQ粉)时,回旋区内温度持续缓慢上升,在回旋区出口处达到的最高温度分别为2 473、2 366 K。烟煤在风口、回旋区内燃烧产生CO的质量分数均高于其他3种燃料;兰炭、烟煤、无烟煤、CDQ粉在回旋区出口处产生的CO质量分数分别为20.82%、26.09%、17.51%、15.74%。采用兰炭喷吹的燃尽率(63.01%)高于采用无烟煤和CDQ粉的燃尽率(分别为58.03%和52.40%),低于采用烟煤的燃尽率(73.13%)。虽然兰炭和无烟煤的组成成分相似,但是从兰炭在风口、回旋区内燃烧产生的温度、气体成分、燃尽率等方面来看,兰炭的燃烧性能要强于无烟煤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号