首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
为解决YOLOv4在目标检测任务中检测速度低、模型参数多等问题,提出一种改进YOLOv4的目标检测算法。将YOLOv4主干网络中的CSPDarknet53替换成Mobilenet用以增强YOLOv4的特征提取网络,PANet原有的3×3标准卷积被深度可分离卷积取代,以降低计算负荷,从而提高识别速度,减少模型参数。然后使用K-means+〖KG-*3〗+算法对由8565张图像组成的数据集进行anchor维度聚类,以提升算法精度。同时,搭建行人口罩佩戴及人体测温拍摄系统用以在人群密集场所中执行疫情防控任务。在保证YOLOv4-Mobilenet网络精度的前提下,相较于原算法FPS提升200%、模型参数减少82%。改进后的模型平均每秒可检测67张图片,可以胜任实际应用中的口罩佩戴检测任务,结果表明该模型检测效果好、鲁棒性较强。  相似文献   

2.
针对景区内高密度行人检测中遮挡与小目标行人漏检率高、模型复杂度高、计算量大的问题,提出一种YOLOv5-GSPE改进算法模型,在保证精度的同时改善检测效果,降低模型复杂度。改进算法模型通过GhostConv优化主干网络中常规卷积(Conv)降低模型复杂度,并使用空洞卷积改善SPPF模块中池化操作带来的特征信息丢失,提升模型检测时效性,增强主干网络特征提取。提出一种增强的特征金字塔网络—PrFPN,使用同层连接进一步丰富原始输入特征的融合,减少特征提取过程中的特征损失。将引入正态分布计算优化后的EIoU损失函数作为边界框回归损失函数,提高边界框定位精度。实验结果表明,YOLOv5-GSPE算法模型对比YOLOv5s模型在保证检测时效性的情况下整体复杂度降低了12.51%,基于Pedestrian测试集的平均精度提升4.05%,基于WiderPerson测试集的平均精度提升3.28%,并降低了行人遮挡及小目标漏检率,改善了检测效果,该模型的可行性与有效性得到验证。  相似文献   

3.
随着卷积神经网络与特征金字塔的发展,目标检测在大、中目标上取得了突破,但对于小目标存在漏检、检测精度低等问题。在YOLOv4算法的基础上进行改进,提出YOLOv4-RF算法,进一步提高模型对小目标的检测性能。使用空洞卷积替换YOLOv4中Neck部分的池化金字塔,在网络更深处减少语义丢失的同时获得更大的感受野。在此基础上,对主干网络进行轻量化并增加特征金字塔到主干网络的反馈机制,对来自浅层与深层融合的特征再次处理,保留更多小目标的特征信息,提高网络分类和定位的有效性。鉴于小目标物体属于困难检测样本,引入Focal Loss损失函数,增大困难样本的损失权重,形成YOLOv4-RF算法。在KITTI数据集上的实验数据表明,YOLOv4-RF在各个类别上的检测精度均高于YOLOv4,并在模型缩小138 MB的基础上提高了1.4%的平均精度均值(MAP@0.5)。  相似文献   

4.
仪表检测是智能仪表测试不可或缺的环节,其效果直接决定仪表测试的准确率。针对仪表检测背景复杂且要求速度快的特点,提出一种基于改进YOLOv3的目标检测算法。基于YOLOv3算法,首先使用DenseNet(Densely Connected Convolutional Networks)替换Darknet中的最后2个网络块,以加强模型对特征的重用。然后采用轻量化的Darknet-46作为特征提取网络,并将DenseNet中的卷积神经网络修改为深度可分离卷积网络,再将所有检测层(YOLO Detection)之前的6层卷积修改为2层,以减少模型的参数。同时引入GDIOU(generalized-IOU and distance-IOU, GDIOU)边界框以回归坐标损失,并根据检测需求重新调整损失函数的权重。实验结果表明,相比原算法,改进的YOLOv3算法参数数量减少40%,在仪表检测中的精确率和召回率分别达到95.83%和94.98%,分别提高2.21个百分点和2.09个百分点,平均精度提高2.42个百分点,检测速度提高30.18%。  相似文献   

5.
针对现有基于深度学习的带式输送机异物检测方法存在检测速度慢的问题,提出了一种改进YOLOv3模型,并将其应用于煤矿带式输送机异物检测。该模型以轻量化网络DarkNet22-DS作为主干特征提取网络,DarkNet22-DS利用深度可分离卷积替换标准卷积,大幅减少了网络参数,并通过复合残差块提高了特征利用效率;通过引入加权双向特征金字塔网络及双尺度输出来改进特征融合网络,提升了模型对大块异物的检测效率;采用完全交并比损失函数作为目标框回归损失函数,充分利用目标框信息间的相关性,提高了模型的收敛速度和检测精度。将改进YOLOv3模型部署在嵌入式平台Jetson Xavier NX上进行煤矿带式输送机异物检测实验,结果表明,相较于YOLOv3模型,改进YOLOv3模型权重文件大小降低了91.4%,大幅减少了模型参数,检测速度提高了16倍,达30.7帧/s,满足煤矿带式输送机异物实时检测需求。  相似文献   

6.
针对现存交通标志识别模型参数量过大、检测速度慢和检测精度较低的问题,本文提出一种改进YOLOv4-tiny的交通标志识别算法.该算法将深度可分离卷积应用到YOLOv4-tiny的特征提取网络中,显著降低了主干网络的参数量和计算量.在特征融合阶段,将特征提取网络得到的不同层次特征图输入双向特征金字塔网络结构(BiFPN)中进行多尺度特征融合.最后,在损失函数设计过程中,使用Focal损失函数代替二分交叉熵损失函数,使检测过程中的正负样本数量不均衡问题得以解决.在TT100K数据集上的测试结果表明,该算法的平均精度均值达到87.5%,相比于YOLOv4-tiny提升了3.9%,模型大小为14MB,仅为YOLOv4-tiny的58%.该算法一定程度上减少了计算量和模型大小,并带来了检测速度和精度的提升.  相似文献   

7.
综采工作面关键设备及人员的准确检测是实现煤炭智能化开采信息感知的重要环节。传统目标检测算法通过人工提取特征实现目标检测,易受环境影响,不具有普适性。基于卷积神经网络的目标检测算法可以自适应地提取深层信息,但复杂环境下检测精度不高、网络参数多、计算量大。针对上述问题,提出了一种改进YOLOv4模型,并将其应用于综采工作面目标检测。为准确从综采工作面复杂环境中检测到目标,在CSPDarkNet53网络中融入残差自注意力模块,保证参数共享及高效局部信息聚合的同时增强全局信息获取能力,提升图像关键目标特征表达能力,进而提高目标检测精度;为适应综采工作面目标检测高效性需求,引入深度可分离卷积替代传统卷积,以减少模型参数量和计算量,有利于模型的工业部署,提高目标检测速度。实验结果表明,与YOLOv3、CenterNet及YOLOv4模型相比,改进YOLOv4模型平均精度均值最高,达92.59%,且在参数量、计算量、检测精度上具有更优的平衡,可在煤尘干扰、光照不均、目标运动等复杂环境下对目标准确检测。  相似文献   

8.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

9.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

10.
现有目标检测算法通常存在体积较大、结构复杂等问题,致使室内机器人作业过程中识别速率与精度较差。针对这一问题,以室内目标检测为基础,提出了一种改进的YOLOv5s轻量化检测方法。该方法主要是在YOLOv5s网络的基础上引入ShuffleNet v2特征提取机制来实现网络的轻量化,同时采用加权双向特征金字塔BiFPN和边框回归损失EIOU获取特征信息更为丰富的特征图,来提升目标检测精度,从而得到一种新的室内目标检测模型。研究结果表明,改进后的模型参数量明显减少,模型复杂度减少了46%,平均精确率均值mAP提升到63.9%,实现了轻量化和检测准确率的平衡,该研究为目标轻量化研究提供了参考。  相似文献   

11.
改进YOLOv5的苹果花生长状态检测方法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对现有目标检测算法难以在果园复杂环境下对苹果花朵生长状态进行高精度检测的问题,提出一种改进YOLOv5的苹果花朵生长状态检测方法,对花蕾、半开、全开、凋落四类苹果树开花期花朵生长状态进行检测。该方法对跨阶段局部网络模块进行改进,并调整模块数量,结合协同注意力模块设计主干网络,提高模型检测性能并减少参数。结合新的检测尺度与基于拆分的卷积运算设计特征融合网络,提升网络特征融合能力。选用CIoU作为边框回归的损失函数实现高精度的定位。将改进算法与原始YOLOv5算法在自建数据集上进行对比实验,结果表明,改进算法mAP达到0.922,比YOLOv5提高5.4个百分点,与其他主流算法相比检测精度有较大提升,证明了算法的有效性。  相似文献   

12.
针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。  相似文献   

13.
提出一种基于改进YOLOv5的轻量型口罩检测算法CG-YOLOv5s。结合卷积注意力机制和Ghost卷积等技术,在网络中加入CBAM-CSP、GRCM改进模块以增强特征提取能力,改善模型的计算性能,使用Alpha-CIoU损失并结合DIoU非极大抑制方法,进一步提升检测精度。结果表明,CG-YOLOv5s在对检测速度影响较小的情况下,获得了89.1%的检测精度,模型大小减少了19.63%,实现了模型轻量化的效果。  相似文献   

14.
YOLOv4-Tiny目标检测网络算法存在参数多和计算量大等问题,无法部署在资源有限的平台上。提出一种基于GhostNet残差结构的主干轻量级目标检测网络算法YOLO-GhostNet。该算法采用GhostNet结构将普通卷积分成两步,即使用较少的卷积核生成一部分特征图,对生成的特征图通过简单计算获得另一部分特征图,并将两组特征图进行拼接,以减少计算所需资源与参数量。通过GhostNet构建残差结构的YOLO-GhostNet算法在经过批量归一化层优化后模型尺寸只有2.18 MB,较YOLOv4-Tiny算法模型尺寸减小90%。YOLO-GhostNet算法在GPU加速环境下平均处理图片速度比YOLOv4-Tiny算法提高24%,CPU处理速度比YOLOv4-Tiny加快56%。实验结果表明,该算法在饮料测试集中的平均精确度均值达到79.43%,相比YOLOv4-Tiny算法,其在精度无损失情况下能够大幅降低网络计算量和参数量,同时加快推理速度,更适合部署于资源算力不足的嵌入式设备。  相似文献   

15.
针对YOLOv4网络模型参数量大,难以在资源有限的设备平台上运行的问题,提出一种对YOLOv4轻量化的车辆和行人检测网络。以MobileNetV1为主干网络,将PANet和YOLO Head结构中的标准卷积替换成深度可分离卷积,减少模型参数量;同时利用跨深度卷积结合不同膨胀率的空洞卷积构建特征增强模块,改善不同预测层对车辆和行人尺度变化的适应能力,提高网络的检测精度。实验结果表明,上述网络模型大小为45.28MB,检测速度为44FPS,相比YOLOv4模型大小减少81.44%,检测速度提升91.30%,在PASCAL VOC2007测试集上,检测精度达到86.32%,相比MobileNetV1-YOLOv4原网络提高1.29%的精确度,能够满足实时高效的检测要求。  相似文献   

16.
针对运动场景下由于设备移动、相机散焦,导致采集到的图像模糊,图像质量低,以及目标体积小,使目标检测困难的问题,提出了一种改进YOLOv5x目标实时检测模型。采用可变形卷积网络替换部分原始YOLOv5x中传统的卷积层,增强模型在运动场景中细粒度特征提取和小目标检测能力;增加SE注意力机制,解决在卷积过程中,因丢失图像全局上下文信息,造成特征损失的问题,提高了模型在图像模糊情况下小目标的检测精度;引入一种新的边界框回归损失函数SIoU Loss,解决了预测框在回归时随意匹配的问题,提高了模型鲁棒性和泛化能力,加快网络的收敛速度。实验结果表明,相比于YOLOv5x模型,将改进后的算法应用在水下移动机器人生物检测中,模型准确率P、召回率R、各类平均精度mAP分别提升了5.90个百分点、5.85个百分点、4.38个百分点,有效增强了小目标检测模型的检测性能。  相似文献   

17.
针对多尺度目标检测准确率偏低的问题,提出了一种基于YOLOv5s改进的多尺度目标检测算法。在YOLOv5s主干网络与Neck网络之间融合CBAM模块,增强模型对多尺度目标重要特征信息的提取能力;同时,在模型的Head部分增加多尺度目标检测结构,提高不同尺度目标检测精度;训练时采用CIoU替代GIoU损失函数,以提高模型收敛能力,实现高精度目标定位。数据集来源于实际场景中采集并增强的4万余张图像。实验结果表明,改进后的模型对行人、车辆和人脸的多尺度目标检测平均精度达92.1%,相比未改进YOLOv5s算法提升了3.4%。模型的收敛性好,对密集场景的目标,小尺度目标检测准确度更加突出。  相似文献   

18.
针对机场跑道异物(foreign object debris,FOD)在图像中目标占比小,特征不明显,经常导致误检、漏检的问题,提出一种改进YOLOv5的FOD目标检测算法。改进多尺度融合与检测部分,融合高分辨率特征图增强小目标特征表达,移除大目标检测层以减少网络推理计算量;引入轻量高效的卷积注意力模块(CBAM),从空间与通道两个维度提升模型关注目标特征的能力;在特征融合阶段采用RepVGG模块,提高模型特征融合能力的同时提高了检测精度;采用SIoU Loss作为损失函数,提升了边框回归的速度与精度。在自制FOD数据集上进行对比实验,结果表明:该方法在满足实时性的条件下,实现了95.01%的mAP50、55.79%的mAP50:95,比原算法YOLOv5分别提高了2.78、3.28个百分点,有效解决了传统FOD检测误检、漏检问题,同时与主流目标检测算法相比,提出的改进算法更适用于FOD检测任务。  相似文献   

19.
现有目标检测算法消耗大量算力资源、参数量大、占用内存空间多,不利于在小型设备上推广使用。因此,基于结构重参数化技术并结合YOLO系列算法的研究成果,提出了一种轻量化目标检测模型Rep-YOLO。使用结构重参数化技术实现模型在训练时的多分支结构和推理时的线性结构之间的转换,从而减少模型推理时对算力资源的消耗。另外,为了降低模型的参数量,利用深度可分离卷积、网络裁剪等方法,重新设计了多尺度特征融合网络和检测头。实验结果表明:在PASCAL VOC上,Rep-YOLO-s1精度可达82.7%,Rep-YOLO-s1与YOLOv6s相比,在参数量减少54.8%的情况下,精度提高了2.4百分点,推理速度提升了6%。在NVIDIA RTX 3060 GPU上,Rep-YOLO-s0比YOLOv6s的推理速度快10%,Rep-YOLO-nano比YOLOv7-tiny快4%,精度提高了0.5百分点。Rep-YOLO与规模类似的模型相比,体积更小,精度更高,更加利于资源有限的部署应用。  相似文献   

20.
为提高行人检测的检测性能, 本文结合SqueezeNet、注意力机制、空洞卷积和Inception等结构, 提出一种基于改进YOLOv4的行人检测算法. 改进YOLO在特征增强部分引入残差连接和结合空洞卷积的注意力模块D-CBAM, 可以从提取到的特征中选择对目标检测重要的信息. 此外, 结合SqueezeNet的“squeeze- expand”结构和Inception网络的多尺度卷积思想提出Inception-fire模块用于替代网络中的连续卷积层, 通过增加网络的宽度达到提升算法性能的效果, 同时减少网络的参数. 最后, 根据行人检测任务的特点并结合Focal loss对损失函数进行改进, 分别对正负样本和难易样本添加权重因子, 强调对正样本和难分类样本的训练, 从而提高网络的检测能力. 改进的YOLO算法在INRIA行人数据集上的检测精度能够达到94.95%, 相对原YOLOv4提高4.25%, 同时参数量减少了36.35%, 检测速度也获得13.54%的提升, 在行人检测中能够表现出更优秀的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号