共查询到19条相似文献,搜索用时 62 毫秒
1.
为了研究Fe-23Mn-xAl-0.7C(x=0.87~6.76)低密度钢中非金属夹杂物形貌特征及形成机理,通过SEM-EDS检测了钢中夹杂物形貌和成分,并借助INCA Feature夹杂物自动分析软件分析了钢中夹杂物尺寸分布、数量密度和面积分数等参数。研究发现,低密度钢中夹杂物尺寸以1~5 μm为主。w([Al])为0.87%时,钢中主要夹杂物为MnS、MnO、Al2O3和Al2O3-MnS,夹杂物数量较少,但尺寸大于7 μm的夹杂物所占比例较大,平均尺寸为3.45 μm;w([Al])为3.28%时,主要夹杂物为AlN、Al2O3、MnS以及AlN-MnS、AlN-Al2O3-MnS复合夹杂物,外包裹MnS尺寸较小,小尺寸夹杂物居多,平均尺寸为2.63 μm;w([Al])为6.76%时,钢中夹杂物以AlN或AlN-MnS为主,且AlN夹杂呈聚集状,夹杂物平均尺寸为2.93 μm。此外,通过FactSage 7.3热力学计算讨论了Fe-23Mn-xAl-0.7C低密度钢中夹杂物析出时机及演变过程,为试验结果提供理论解释。 相似文献
2.
为了研究稀土铈对Fe-28Mn-10Al-1C低密度钢中非金属夹杂物的影响机理,通过扫描电子显微镜(SEM)、能谱分析仪(EDS)及Image J软件对比分析了稀土处理前后夹杂物的形貌、成分、尺寸和数量,并基于热力学计算阐明了稀土铈对夹杂物的改性机理。研究结果表明,低密度钢中典型夹杂物为AlN和AlN-MnS复合夹杂物,钢中AlN夹杂物较多,尺寸较大,平均直径为3.64μm;向低密度钢中添加(质量分数)0.001 9%铈后,夹杂物以球状AlN-Ce2S3、AlN-Ce2S3-MnS、AlN-MnS复合夹杂物和单一AlN夹杂物为主,整体夹杂物数量最少,夹杂物平均直径及长宽比降低,平均直径为3.08μm;向低密度钢中添加(质量分数)0.013%铈后,夹杂物则以球状Ce2S3、附着态AlN-Ce2S3和单一AlN夹杂物为主,夹杂物数量异常升高,1~4μm夹杂物所占比例较大,平均直径为2.52μm。稀土处理可有效细化夹杂物尺寸并改善大尺寸氮化物和硫化物夹杂的形貌特征,未检测到单一MnS及Al2O3夹杂物。此外,通过FactStage 8.0热力学计算软件分析了稀土铈对Fe-28Mn-10Al-... 相似文献
3.
4.
为了研究高锰高铝低密度钢液与耐火材料间的相互作用规律,以Fe-20Mn-10Al-C(20%Mn、10%Al)低密度钢液与MgO耐火材料棒在1 600 ℃时界面反应为研究对象,分别反应30和60 min后对MgO耐火材料的微观结构以及钢中非金属夹杂物特征进行了观察。结果表明,反应后MgO耐火材料转变为3层结构,分别为致密的MgO·Al2O3尖晶石界面层,尖晶石颗粒、钙铝酸盐和MgO颗粒组成的过渡层以及MgO颗粒组成的原始层,且随着反应时间的增加,尖晶石界面层厚度增加;在高锰高铝低密度钢液与MgO耐火材料的相互作用下,钢中非金属夹杂物主要包括单一MgO·Al2O3夹杂、AlN夹杂、MgS夹杂和MgO·Al2O3-AlN、MgO·Al2O3-MgS等复合夹杂物。 相似文献
5.
对Q235钢盘条进行了非金属夹物分析和力学性能测试,结果表明,钢中夹要物对盘条拉拔性能影响明显,是引起盘条拉拔断裂的主要内在原因。 相似文献
6.
7.
8.
9.
贝氏体钢轨强度高、塑性好,具有优良的抗接触疲劳和耐磨性,被誉为“21世纪的钢轨钢”,但贝氏体钢生产工艺具有一定的特殊性,钢中的夹杂物严重影响钢轨的塑性、韧性以及抗疲劳性能。为了研究贝氏体钢中典型夹杂物的变化规律,以国内某钢厂150 t转炉→双150 t LF→VD脱气→280 mm×380 mm方坯连铸生产的贝氏体钢为研究对象,对生产全流程取样,结合氧氮分析、钢液成分分析和非金属夹杂物分析,研究典型夹杂物的来源和形成机理。研究结果表明,贝氏体钢生产过程中氧氮含量持续降低,浇铸末期钢中氧、氮质量分数分别为0.000 8%和0.004 0%;一次LF化渣后夹杂物为CaO-SiO2-Al2O3,主要是合金、脱氧剂和白灰带入的Ca、Als与钢中的氧或氧化物发生反应的脱氧产物;一次LF合金化后,夹杂物为CaO-SiO2-Al2O3-MgO,夹杂物中CaO和MgO含量增加,Al2O3含量降低;二次LF进... 相似文献
10.
11.
12.
超重力技术可以有效提高固液两相间的重力差,在冶金领域,超重力场的引入可以大幅度增加金属熔体中夹杂物的去除效率。基于超重力冶金装置模型,根据动网格与流-固耦合理论,建立了不同重力场下固态夹杂物在钢液中上浮的流体动力学模型。该模型模拟了夹杂物在不同系数的重力场中上浮的运动状态,研究了超重力场中的重力系数与夹杂物尺寸等因素对颗粒上浮和流场分布的影响。模拟结果表明,在重力场系数恒定时,夹杂颗粒经短暂的加速上浮过程后,后续的上浮运动将趋于匀速,夹杂物的上浮速度会随着施加重力场的增大而增长,夹杂物附近的钢液也会被更快地“推开”,从而出现改变流动状态的趋势。尺寸d为1、10 μm的夹杂物颗粒由于其尺寸较小,在施加一定的超重力场后仍满足Stokes上浮模型;尺寸d为100 μm的大尺寸夹杂物则仅在约10倍重力场作用下符合Stokes上浮模型,当施加更大的重力场时,夹杂物附近的流场会由层流流动转变为湍流流动,不再满足Stokes定律。在研究不同系数重力场中夹杂物上浮的模型时发现,当重力场的系数大小随时间变化时,尺寸为1 μm量级的小尺寸夹杂上浮速度的变化幅度与重力场的变化幅度呈正比;而尺寸为10、100 μm的夹杂物在脱离层流流场后,上浮速度与重力场不再呈线性关系。 相似文献
13.
为了研究马钢转炉冶炼与电炉冶炼在非金属夹杂物控制水平方面的差异,利用ASPEX夹杂物分析仪分别对转炉钢与电炉钢轧制环件进行了夹杂物定量检测分析。结果表明:电炉钢轧制环件中单位面积内的夹杂物数量约为8.0个/mm2,而转炉钢轧制环件中单位面积内的夹杂物数量为17.6个/mm2;电炉钢中超过10μm的大尺寸夹杂物约占夹杂物总数的2.84%,而转炉钢试样中10μm以上的夹杂物约占夹杂物总数的4.85%。虽然电炉钢的洁净度优于转炉钢,但电炉钢10μm以上大尺寸夹杂物中脆性夹杂物的比例明显高于转炉钢,提高电炉钢中脆性夹杂物的控制水平仍是今后电炉钢冶炼控制的重点。 相似文献
14.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3 ≤ 37%、MgO 10%、(% CaO+% MgO)/% SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO·Al2O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按\ 相似文献
15.
16.
为研究GCr15轴承钢中非金属夹杂物的演变,对某钢厂EAF-LF-VD-CC流程生产的GCr15轴承钢进行全流程取样,利用可进行大面积自动检测分析的ASPEX扫描电镜结合普通扫描电镜(SEM-EDS),系统分析了各工序中夹杂物的演变行为。结果表明,GCr15轴承钢精炼过程中夹杂物主要类型为MgO-Al2O3-CaO类复合夹杂物与MnS,少量SiO2-Al2O3,90%以上夹杂物尺寸为1~8 μm。随着精炼的进行,夹杂物数量逐渐减少,在VD软吹阶段后期夹杂物数量及总面积降到最低。精炼期间,夹杂物成分在最初的高Al2O3(w([Al2O3])>80%)的区域逐渐向MgO、CaO含量升高的区域转移,VD破真空后MgO(w([MgO])>20%)、CaO(w([CaO])>30%)达到最高,之后向Al2O3含量升高的区域移动,最终在中间包浇注时停留在高Al2O3(w([Al2O3])>65%)的区域。钢中Ds类夹杂物主要为MgO-Al2O3-CaO类复合夹杂物,Ds类夹杂物的生成及去除随机性强,VD对Ds类夹杂物有较强去除作用。 相似文献
17.
18.
对轴承钢热轧板中的夹杂物以及浇铸过程结晶器浸入式水口上的结瘤物进行了电镜检测.发现轧板试样中夹杂物类型主要是TiN、MgO·Al2O3和MnS以及少量的CaS,尺寸大多在20μm以内,除此之外,还观察到一些大尺寸MgO·Al2O3和Al2O3夹杂物及其伴生的裂纹.通过对水口结瘤物的检验分析,发现结瘤物主要以MgO·Al2O3尖晶石类夹杂物为主,还有少量的MgO-Al2O3-CaO系夹杂物,此外还含有部分凝钢.结瘤物成分与钢水中氧化物夹杂一致,因此推测水口结瘤产生原因为钢液中的固态氧化物夹杂在浇注过程中在水口上的聚集沉淀,轧板中大尺寸夹杂可能是由水口结瘤物剥落造成. 相似文献
19.
利用电化学实验和扫描电镜(SEM)结合能谱仪(EDS)分析研究了非金属夹杂物对钛、铌双稳定439M铁素体不锈钢耐点蚀性能的影响。动电位阳极极化实验结果表明,没有或者少夹杂物区域为工作电极的试样439M-Part击穿电位为813mV,比整个区域为工作电极的试样439M-Whole的击穿电位高出了约600mV。SEM结合EDS分析显示:试样439M-Whole的点蚀坑呈不规则形貌,主要发生于(Ti,Ca,Al)2O3复合夹杂物上,这是钝化膜表面不均匀和点蚀坑内的自催化反应共同作用的结果;而试样439M-Part的点蚀坑则位于(Ti,Nb)(C,N)夹杂物周围。研究表明,夹杂物周围有铬的偏析并形成铬的化合物,其周围出现贫铬区,引发点蚀。 相似文献