首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了分析石灰石代替石灰造渣炼钢这项技术在节能环保方面产生的效果,本文将石灰石直接进转炉造渣 炼钢模式和原有的“煅烧石灰-造渣炼钢”模式的CO 2 排放进行详细的对比计算,结果得到用石灰石替代1 kg石 灰,在冷料为废钢和生铁块的情况下,分别能够减排1.29 kg和1.12 kg CO 2 。该技术为钢铁行业节能减排带来的 效益巨大。  相似文献   

2.
在t=1400-1600℃和CaO/SiO2=0.5-2.5的CaO-MgO(=7.4%-8.0%)-FetO-SiO2渣系中CaO圆柱体的旋转实验,得出其因子方程:J=k/u·Sc^2/^3=0.1104Re-0.5。并探讨了温度、石灰运动速度、炉渣碱度、FeO/SiO2……等对石灰渣化速度的影响;还提出了供生产参考用的方程式。  相似文献   

3.
研究了以天然石灰和天然粉石英为基本原料,添加2CaO·SiO2对合成硬硅钙石型硅酸钙保温材料的影响。结果表明,随着2CaO·SiO2加入量的逐渐增多,硬硅钙石型硅酸钙保温材料的烘干收缩率逐渐降低;当添加量由0上升到5%时,制品的烘干收缩率由2.19%降低到0.92%,制品由不合格变为合格;烘干收缩率降低的原因是2CaO·SiO2的加入促进了二次粒子形成。  相似文献   

4.
以转炉钢渣为原料,通过高温重熔获得不同碱度渣样并开展H2O/CO2氧化试验,在获得H2/CO气体能源的同时改善渣样磁性,提升渣综合利用率。试验结果表明,随着碱度增加,析出主要物相从橄榄石到镁蔷薇辉石最终向硅酸二钙转变,与此同时,固溶在其中的RO相逐渐溶出。相同亚铁含量下,高碱度渣样能够大幅度改善氧化反应效率,碱度1.83渣样最高产气量为H2 (32.3 cm3/g)、CO (22.1 cm3/g),反应率分别达到了83.7%、57%,碱度1.13的渣样反应率分别仅为 40.5%、32%。氧化后的渣样磁选效率均有提高,碱度2.13渣样从14.85%增加到78.75%。  相似文献   

5.
张培昆  张震威  王立 《工程科学学报》2022,44(11):1978-1987
常规石灰煅烧工艺中燃料在煅烧窑内燃烧,石灰石分解所释放的二氧化碳(CO2)与烟气混合,CO2捕集需进行气体分离。而采用CO2作为循环载气加热石灰石料块的新型煅烧过程,可避免上述混合问题,从而实现直接捕集石灰石分解产生的CO2。基于CO2加热的新型煅烧过程与常规工艺煅烧过程有较大不同,为深入理解新型煅烧过程并对其进行准确设计和有效优化,建立了基于CO2加热的石灰煅烧过程的数学模型。基于模型对一台产量为200 t·d?1的煅烧窑进行了模拟计算,获得了气固温差、气相流量、气相温度、料块表面温度、反应界面温度和转化率等关键参数在煅烧窑中的分布情况,并分析了进气温度、进气流量和料块半径三个工况参数对煅烧过程的影响。   相似文献   

6.
应用热力学方法,对转炉炼钢前期高碳低温铁水条件下石灰石分解及CO2氧化作用进行了分析,推导出了CO2分压(pCO2)和高碳低温区域碳活度系数fC,%的求解方程.结果表明:石灰石中CaCO3在高碳低温的铁水面附近,其分解反应平衡温度比标准状态时低得多,随着吹炼过程中炉温上升其反应趋势增大,CO2在转炉炼钢吹炼初期与[C]、[Si]、[Mn]和Fe(l)的反应都可以自发进行,其排列次序与各元素被O2氧化的反应相同;在高碳低温铁水条件下pCO2值非常小,转炉炼钢初期pCO2在0.002 2~0.000 5pΘ左右,因此可以认为石灰石分解产生的CO2会全部参与铁水氧化反应.  相似文献   

7.
为寻求CO2在转炉流程内的规模化利用途径,减少CO2排放量,通过工业实验和理论分析对转炉底吹CO2工艺开展了创新性技术研究。本文对CO2吸附深度稳定脱氮技术以及CO2底吹高强度搅拌技术的机理进行了深入研究,并通过热态实验加以验证。同时根据此次研究成果,制定了转炉炼钢动态调节底吹CO2流量的工艺,实现了转炉出钢终点氮含量的稳定控制,提高了宣钢150t转炉冶炼脱磷效率和控氧效果,取得了良好的经济效益和社会效益。  相似文献   

8.
9.
结合CO2的高温反应特性,针对性地制定了CO2冶炼工艺,并对转炉顶吹CO2比例对终点磷、氮和碳氧浓度积的影响进行了工业试验研究。结果表明:随着转炉冶炼前中期CO2顶吹比例由4.84%逐渐提高到9.68%,转炉终点磷的质量分数先下降后基本不变,氮的质量分数逐渐下降,碳氧浓度积与渣中TFe变化趋势基本相同,均为先降低后增加,对于不同指标最佳顶吹CO2比例不同。试验转炉终点磷、氮的质量分数、碳氧浓度积与渣中TFe均下降,下降比例最高分别为20.4%、34.3%、12.92%和8.89%。   相似文献   

10.
稀土钢连铸过程中,结晶器内上浮至渣金界面的高熔点稀土夹杂物如果不能被保护渣有效的溶解吸收,进入保护渣后会改变渣的理化性能,影响连铸顺行。通过高温实验研究了Ce AOl3在连铸保护渣中的溶解机制,探究了保护渣w(Ca O)/w(Al2O3)(简写为C/A)对溶解过程的影响。实验结果表明,Ce AOl3溶解过程中,夹杂物-渣界面会形成Ce3+和Ca2+的浓度边界层。在C/A为0.8的保护渣中会形成中间产物Ca Ce Al3O7,随着C/A增加到1.0,中间产物Ca Ce Al3O7减少;继续增加C/A至1.2,中间产物消失。其溶解机制为,低C/A渣中Al O45-较多,在浓度边界层中Ce AOl3溶解形成的Ce3+与渣中Ca2+、Al O4  相似文献   

11.
X射线荧光光谱法测定转炉渣中CaO,MgO,SiO_2   总被引:7,自引:1,他引:6       下载免费PDF全文
试样用硼砂镶边衬底压片 ,以铑靶的康普顿散射线强度为内标 ,X射线荧光光谱法测定转炉渣中CaO ,MgO和SiO2的含量 ,结果令人满意。  相似文献   

12.
摘要:为了深入了解非均相脱磷剂中固体CaO在3CaO·P2O5-2CaO·SiO2(C2S-C3P)饱和熔渣中的溶解及反应机理,采用静态浸入法和旋转圆柱法研究固体CaO在C2S-C3P饱和CaO-SiO2-FetO-P2O5(10%)渣中的溶解行为,运用FESEM/BSED EDS对固体CaO和熔渣界面进行了观察,分析了固体CaO与C2S-C3P饱和熔渣间的反应机理。结果表明,加强对熔池的搅拌,能够加快固体CaO在熔渣中的侵蚀速度和溶解速度;发现了固体CaO在饱和熔渣中的溶解数量受熔渣中FeO通过边界层向固体内部渗透深度的影响,FeO渗透深度越深,溶解越多;固体CaO先与熔渣中的硅和磷反应生成磷含量低的C2S-C3P固溶体,待一段时间后,最终生成磷含量高的Ca5(PO4)2SiO4。  相似文献   

13.
利用氧化钙易溶解于稀醋酸,而氟化钙不溶解于稀醋酸的特性.试样以稀醋酸处理,用滤纸过滤不溶解物残渣,滤液加氢氧化钾溶液调节pH≥12.5,用EGTA滴定法测定CaO含量.过滤的不溶解物残渣在铂金坩埚中灰化、灼烧,加含有硼酸钠的混合熔剂,于950℃左右熔融、酸化浸取定容、分液后,加氢氧化钾溶液调节pH≥12.5,用EGTA滴定法测定CaF2含量.  相似文献   

14.
结合实验室和工业试验的数据,讨论了转炉炼钢用石灰石代替石灰造渣过程中石灰石的行为,结果认为,转炉炼钢前期直接加入石灰石做造渣原料,可以很快完成煅烧化渣过程,并且在某些方面比使用石灰有利;用石灰石造渣能够达到希望的结果,石灰石分解在5~6 min内完成;高温有利于碳酸钙的快速分解,1400 ℃与1 100℃相比,虽然温度...  相似文献   

15.
The influence of NaCl-CaCl2 on thermal decomposition of REPO4(RE: Ce, La, Nd, Th) with CaO was studied. The heat decomposing process of REPO4 was tested with TG-DTA experiments. The results showed that the decomposition temperature of REPO4 with CaO was reduced because of adding NaCl-CaCl2 mixture (NaCl:CaCl2 = 1:1 ). The influence of the addition of NaCl-CaCl2, roasting temperature and roasting time on decomposition ratio of REPO4 with CaO was studied. The results showed that the decomposition ratio of REPO4with CaO was 79% when the addition percentage of NaCl-CaCl2 was 10%, the roasting temperature was 750℃, and the roasting time was 1 h.  相似文献   

16.
 提高高炉炉料中钒钛磁铁矿的配比(大于80%,甚至达到100%)对于实现攀西地区钒钛磁铁矿资源的深度开发与综合利用意义重大。针对高配比钒钛矿带来超高TiO2高炉渣的情况,提出了“以镁代钙”的新造渣理念。系统地研究了w(TiO2)和w(MgO)/ w(CaO) 对CaO-SiO2-TiO2-MgO-Al2O3渣系黏度和熔化性温度的影响规律。结果表明,惰性气氛下,随着w(TiO2)从20%增加到34%,炉渣黏度逐渐减小;随着w(MgO)/ w(CaO) 从0.32增加到0.65,炉渣黏度略有增大。炉渣熔化性温度随着w(TiO2)增加先升高后降低。“以镁代钙” w(MgO)/ w(CaO) 在0.32~0.65范围内增加时,熔化性温度呈先明显降低后略有升高的趋势, w(MgO)/ w(CaO)在0.57附近时,(w(MgO)为12%)炉渣熔化性温度达到最低点,降低幅度约为50 ℃。“以镁代钙”使得炉渣液相区从钙钛矿析出区域附近逐渐移至钙钛矿相与镁铝尖晶石相之间宽阔的区域。采用“以镁代钙” w(MgO)/ w(CaO) 造渣理念对降低超高TiO2高炉渣熔化性温度具有可行性。  相似文献   

17.
郭江  李荣 《中国冶金》2020,30(12):18-21
为了明确B2O3对高Al2O3渣稳定性的影响,基于现场高炉渣的实际成分,通过熔体物性测定仪、扫描电镜、红外光谱仪分析了B2O3对高Al2O3渣黏度和基础玻璃微观结构的影响。结果表明,随着B2O3含量的增加,炉渣黏度降低;当炉渣温度低于1 360 ℃时,炉渣随着B2O3的增加稳定性增强;炉渣温度为1 216 ℃、B2O3质量分数为2.0%时,炉渣的稳定性最好。随着B2O3含量的增加,炉渣不断玻璃化,当B2O3质量分数为2.0%时,炉渣微观结构完全是玻璃态结构,表现为假性酸性渣的性质;随着B2O3含量的增加,[Si-O-Al]键断裂,[AlO6]八面体结构振动峰增加,炉渣的稳定性越来越好。  相似文献   

18.
王敏  杨荃 《工程科学学报》2014,36(S1):162-167
采用X射线衍射、扫描电镜及能谱、夹杂物无损伤提取等手段研究和跟踪了IF钢铸坯中大颗粒高SiO2类夹杂物的特征及来源.结果表明:IF铸坯中存在大量大颗粒固相夹杂物,其中高SiO2类夹杂约占总数的60%,尺寸较大,一般>50μm,形状不规则;铸坯中高SiO2夹杂的主要来源是未预熔充分的结晶器保护渣,粉渣颗粒内部存在多个物相,其中部分高熔点固相氧化物(SiO2,Al2O3)在浇注过程中未完全溶解就伴随卷渣进入钢中被坯壳捕获,最终形成铸坯中夹杂物.改善保护渣的预熔性能,很大程度可以降低高SiO2类固相大颗粒夹杂物对铸坯造成的质量缺陷.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号