首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
低温回火态新型贝氏体钢的组织性能   总被引:2,自引:0,他引:2  
研究了回火工艺对新型低合金贝氏体钢组织和性能的影响,了解了该材料的回火特性.结果表明:正火和低于400℃回火后的组织由贝氏体、铁素体和残余奥氏体组成,具有较好的力学性能、回火抗性、良好的焊接性和机械加工性;在高于500℃回火后出现回火脆性,由新型贝氏体组织转变为典型贝氏体组织,其原因与回火过程中残余奥氏体和贝氏体铁素体的分解、碳化物析出有关.通过研究回火后的组织转变、残余奥氏体热稳定性、机械稳定性的变化,探讨了无碳贝氏体韧化及脆化机理,提出了适于该钢的最佳回火工艺.  相似文献   

2.
对C-Si-Mn系TRIP钢采用等温退火工艺,得到具有TRIP效应贝氏体基高强钢。结果表明,TBF钢的组织主要由无碳化物贝氏体板条束、块状残余奥氏体、板条束间的薄膜状残余奥氏体及少量的回火马氏体组成。在连退过程中,贝氏体等温温度对TBF钢的组织和性能影响显著,当贝氏体等温温度为300℃时,TBF钢具有低屈服强度(789 MPa)、高抗拉强度(1241 MPa)以及良好的伸长率(16.6%)。等温300℃时,屈服强度的降低主要是因为80~190 nm的无碳化物贝氏体板条的生成。经过XRD测定,其残余奥氏体含量为12.04%,残奥含碳量经过测算为1.4%。稳定的块状残余奥氏体和无碳化物贝氏体板条有利于韧性的提高,相反,马氏体应该减少或避免。  相似文献   

3.
采用部分奥氏体化-两相区保温-淬火-配分(IQPB)热处理工艺,借助SEM、TEM、XRD研究了淬火配分贝氏体钢组织形貌及残余奥氏体特征,利用EPMA、EBSD、纳米压痕等表征了不同位置残余奥氏体中合金元素的分布情况,结合室温拉伸应力-应变曲线,研究了C、Mn元素对不同位置残余奥氏体稳定性的影响及其相变规律。结果表明,淬火贝氏体钢室温组织中残余奥氏体以块状和薄膜状形态存在。在拉伸形变过程中,发生TRIP效应,残余奥氏体体积减小,相变优先发生在铁素体晶界,最后发生在贝氏体板条之间,C、Mn元素对残余奥氏体有稳定作用,使残余奥氏体不易发生相变。拉伸断口处应力集中,残余奥氏体完全转变为马氏体,距离断口2和4 mm处,残余奥氏体体积分数分别为3.12%和5.03%。薄膜状残余奥氏体比块状残余奥氏体稳定性更强,并且111γ晶向的残余奥氏体不稳定,容易向马氏体转变。  相似文献   

4.
回火对核电设备用A508-3钢的力学性能影响很大。采用扫描电镜和硬度测试研究了A508.3钢回火过程中组织的演变和性能的变化,并对经600~660℃回火的钢进行了基于硬度测量的动力学分析。回火过程中硬度的变化可以用残留奥氏体和奥氏体一马氏体的分解,贝氏体铁素体内碳化物的析出、粗化以及贝氏体铁素体的回复再结晶来解释。动力学分析表明,A508.3钢在600~660℃回火时的相变激活能约为101.4kJ/mol,与碳原子在铁素体中的扩散激活能相近。A508.3钢只有在较高温度回火时,才出现贝氏体铁素体内碳化物的大量析出和粗化,这说明该钢种具有较好的回火稳定性。  相似文献   

5.
700MPa级高塑低碳低合金钢的多相组织调控及性能   总被引:1,自引:0,他引:1  
通过临界退火、临界回火以及回火的多步热处理方式,研究了低碳低合金钢的组织演变与力学性能.结果表明,临界退火后的组织为板条状的临界铁素体及贝氏体/马氏体的双相组织.经临界回火后,为临界铁素体、回火贝氏体/马氏体以及残余奥氏体的多相组织.残余奥氏体呈粒状和条状,分布在铁素体/贝氏体(马氏体)相界面及贝氏体/马氏体板条之间,含量高达29%,并在回火后保持稳定,主要通过C,Mn,Ni和Cu在逆转奥氏体中的富集来稳定.临界退火及回火过程中,Nb C在铁素体及贝氏体/马氏体中析出,呈球状、椭圆形或不规则形状,平均尺寸为10 nm;富Cu的析出相在临界回火及回火过程中形成,呈球状分布于铁素体及残余奥氏体中,尺寸在10~30 nm之间.通过残余奥氏体的应变诱导塑性(TRIP)效应及纳米析出相的析出强化作用,实验钢具有优异的力学性能:屈服强度高于700 MPa,抗拉强度高于900 MPa,均匀延伸率高于20%,总延伸率高于30%.  相似文献   

6.
采用不同的退火工艺得到了多边形铁素体基TRIP钢(TPF)、贝氏体铁素体基TRIP钢(TBF)和回火马氏体基TRIP钢(TAM)3种不同基体结构的TRIP钢,并对它们的显微组织和力学性能进行研究。结果表明,退火工艺的不同导致实验钢的微观组织完全不同,力学性能也存在显著差异。TPF钢的基体结构为尺寸较大的多边形铁素体,其上分布着贝氏体、马氏体及少部分残留奥氏体,抗拉强度和伸长率均低于TBF钢与TAM钢。TBF钢的基体结构为贝氏体铁素体,残留奥氏体呈长条状或块状分布于贝氏体板条间,表现出高强度但伸长率不佳。TAM钢组织由退火马氏体基体、残留奥氏体及新生马氏体组成,残留奥氏体以稳定的长条状或薄膜状分布在退火马氏体晶界处或板条间,具有最佳的力学性能。  相似文献   

7.
热处理工艺对中碳TRIP钢微观组织及力学性能的影响   总被引:1,自引:1,他引:1  
研究了淬火回火(QT)和等温淬火(AT)两种热处理工艺对0.4C-1.5Si-1.5Mn系中碳TRIP钢棒材微观组织和力学性能的影响。结果表明,经等温淬火处理的试样,含有贝氏体铁素体、贝氏体、残余奥氏体及少量马氏体等多相组织,并且试样中含有较高的残余奥氏体量,这使得其常规力学性能明显优于淬火回火马氏体组织的试样。等温淬火工艺经400℃等温600s所获得的力学性能最佳,相变诱发塑性效果也最好,而且基体的组织较为均匀细化,残余奥氏体的含量较高,并有较多的下贝氏体存在,与上贝氏体交替出现对基体进行分割,从而可使实验用TRIP钢具有明显的TRIP效应。  相似文献   

8.
观察并研究了250 ~ 600℃区间回火对超高强贝氏体钢组织与力学性能的影响.结果表明:随回火温度升高,抗拉强度不断降低,屈服强度先升高后降低,伸长率和冲击功则呈先升高后降低然后再升高变化规律.250 ~ 350℃回火,残留奥氏体分解速率缓慢,抑制了板条合并粗化,组织为板条贝氏体+稳定膜状残留奥氏体,析出相粒子尺寸细小,具有良好的强度和塑韧性.特别是在350℃回火时,板条内部有ε碳化物析出,以及位错移动所形成的位错胞状亚结构细化了晶粒,使其具有最佳强韧配合.450℃回火,残留奥氏体大量分解导致组织内部出现链状分布的渗碳体,引起回火脆性.600℃回火,残留奥氏体几乎全部分解,部分区域发生再结晶,塑性和韧性提高而强度明显降低,析出物明显粗化.力学性能的非单调变化归因于钢在回火过程中,既包括板条贝氏体和位错亚结构的回复、再结晶软化过程,也包括残留奥氏体分解与析出相的强化机制.  相似文献   

9.
概述了低合金超高强度钢中所涉及的相变及组织控制方法。马氏体相变是低合金钢获得超高强度的最基本的途径,通过优化热处理或形变热处理工艺获得细化的马氏体板条是保证超高强度的关键。马氏体钢中足够的塑韧性通过适度回火来保障,回火过程中组织控制的关键是避免脆性渗碳体碳化物的析出。对低合金超高强钢起重要作用的贝氏体主要有两种,下贝氏体和无碳化物贝氏体,其中下贝氏体主要与马氏体一起形成复合组织,细化马氏体板条尺寸。无碳化物贝氏体通过得到超细亚结构或超细板条而获得超高强度,同时利用贝氏体转变的不完全性获得稳定的高碳残留奥氏体来保证塑韧性。残留奥氏体在低合金超高强钢韧性改善方面起着重要作用,Q-P(或Q-P-T)钢和TRIP钢中较多的残留奥氏体可赋予低合金超高强钢超乎寻常的高塑韧性。  相似文献   

10.
低碳超高强度贝氏体钢的组织细化   总被引:2,自引:1,他引:2  
对系列低碳、超高强度贝氏体钢(LCUHSBS),通过有效地控制相变温度、冷却速率与回火参数,贝氏体铁素体(BF)含碳量增加、组织细化、碳化物消除以及存在高稳定性、高体积分数的膜状残余奥氏体(AR).利用AFM、SEM等分析并测试了贝氏体钢的显微组织与晶粒尺寸,结果表明,板条束内含有若干大致平行的BF板条,而每一板条由许多切变单元组成;切变单元进一步又分成大量超细亚结构,其直径约为18nm.如此细化的显微组织确保了贝氏体钢在超高强度条件下,冲击吸收能成倍提高.  相似文献   

11.
以贝氏体钢为研究对象,设计了4种热处理工艺,研究了不同热处理工艺下试验钢的显微组织及疲劳裂纹扩展速率。结果表明,热轧态试验钢的微观组织以粒状贝氏体为主,其上分布有少量的板条贝氏体、马氏体和粗大块状M/A岛,残留奥氏体的体积分数为16.2%,但稳定性较差,裂纹能够直接穿过粗大的块状M/A岛继续扩展,疲劳裂纹扩展速率最快。经900 ℃奥氏体化+空冷后,显微组织以板条贝氏体和马氏体为主,M/A岛仍为粗大的块状,残留奥氏体含量减少至12.3%,疲劳裂纹扩展速率略有降低。经900 ℃奥氏体化+380 ℃盐浴等温30 min +空冷后,显微组织以细密、有序的板条贝氏体为主,残留奥氏体含量减少至10.2%,以薄膜状伴生在板条贝氏体间,板条状贝氏体及板条间的残留奥氏体薄膜会使裂纹端钝化、分叉、偏折,阻碍裂纹扩展的能力增强;经350 ℃回火240 min后,显微组织以马氏体和板条贝氏体为主,残留奥氏体含量比热轧态略微降低,为14.9%;而经450 ℃回火240 min后,显微组织以板条状贝氏体为主,其上分布有少量的马氏体,残留奥氏体体积分数减少至8.6%,也以薄膜状伴生在贝氏体板条间,同时有大量的碳化物析出,裂纹扩展速率最慢。  相似文献   

12.
研究了3种碳含量(0.22C、0.34C、0.45C)的贝氏体钢在960℃奥氏体化+Ms点以上10~50℃等温淬火工艺下碳含量对贝氏体组织转变和力学性能的影响。结果表明,3种试验钢经过等温淬火处理后均获得由贝氏体铁素体和残留奥氏体相间分布组成的无碳化物贝氏体组织;随着碳含量的降低,贝氏体相变时间显著缩短,贝氏体铁素体板条变厚,硬度和抗拉强度呈下降趋势,但冲击性能显著提高,这主要是与低碳钢贝氏体转变温度更高,贝氏体铁素体板条粗大但高碳含量的大块状残留奥氏体减少有关。  相似文献   

13.
采用盐浴热处理试验,结合扫描电镜、透射电镜及室温拉伸试验,研究了快速加热+短时保温快速回火条件下超高强低碳贝氏体钢的组织和性能变化规律。结果表明,快速回火工艺下,超高强低碳贝氏体钢发生碳过饱和贝氏体和马氏体中的碳化物析出、铁素体和马氏体的重构以及微合金析出物的析出等现象,进而影响材料的强塑性;在700℃以下快速回火时,与以板条状贝氏体(LB)组织为主的复相贝氏体钢相比,以粒状贝氏体(GB)组织为主的钢具有更好的回火稳定性;在750~800℃两相区快速回火时,铁素体和马氏体相大量重构,最终形成粗大铁素体和马氏体,抗拉强度大幅提升,屈强强度大幅降低,且以LB组织为主的复相贝氏体钢中重构铁素体晶粒更为粗大,导致其屈服强度更低。  相似文献   

14.
In the present study, a quenching treatment prior to two-stage heat treatment was conducted on a Fe–0.28 C–1.55 Mn–2.06 Al transformation-induced plasticity steel to tailor the final microstructure. Compared with the microstructure of the ferrite, bainite and blocky retained austenite obtained by conventional two-stage heat treatment, the microstructure subjected to quenching plus two-stage heat treatment was composed of the ferrite, lath bainite and film-like retained austenite. The corresponding tensile behavior and mechanical stability of retained austenite were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the mechanical stability of blocky retained austenite grains is lower and most of them transform to martensite during the tensile deformation, which leads to higher ultimate tensile strength and instantaneous work hardening exponent. Film-like retained austenite has relatively higher stability, which could cause sustained work hardening and high ductility as well as product of strength and elongation.  相似文献   

15.
采用激光共聚焦扫描显微镜对07MnCrMoR水电钢奥氏体晶粒长大的动态过程进行了原位观察,并对其静态CCT曲线进行了测定,利用淬火机和热处理炉对38 mm厚的试验钢进行了淬火和回火试验。结果表明:试验钢在1200℃以下加热时奥氏体晶粒长大趋势不明显;当冷却速率为0.05~0.25℃/s时,试验钢的组织转变为多边形铁素体+珠光体,冷却速率为0.5~20℃/s时转变为贝氏体组织,冷却速率为20~50℃/s时转变为马氏体组织;930℃淬火后,试验钢的组织转变为板条贝氏体+马氏体,600℃回火后转变为铁素体+回火贝氏体,大量的碳化物在铁素体基体上析出,其屈服强度为602 MPa,抗拉强度为713 MPa,-20℃低温冲击吸收能量为259 J,力学性能高于国家标准的要求,为最佳的调质生产工艺。  相似文献   

16.
研究了正火后回火温度对无碳化物贝氏体钢无缝钢管组织和性能的影响。试验结果表明,930 ℃正火后在600 ℃以下回火时,随回火温度的提高,试验材料的抗拉强度有降低的趋势,但降幅不大,强度在973~1012 MPa变化。试验材料的冲击吸收能量在300 ℃达到最大值,为72 J;400 ℃回火时,冲击吸收能量出现最低值,出现无碳化物贝氏体钢的回火脆性;回火温度超过400 ℃时,冲击吸收能量上升;300~350 ℃回火时,伸长率和断面收缩率最高。在400 ℃以下回火时,试验材料的组织由无碳化物贝氏体、块状铁素体和残留奥氏体组成;超过400 ℃回火时,组织为粒状贝氏体及块状铁素体。无碳化物贝氏体钢无缝钢管930 ℃正火,300 ℃回火时具有较佳的综合力学性能。  相似文献   

17.
对120 mm厚的F460钢调质厚板采用相同的淬火回火温度,不同的淬火冷却速度处理,之后对钢板进行组织与性能对比,寻找该钢种的最佳热处理工艺。采用2 ℃/s冷速进行冷却的钢板,回火后强度最高,但是冲击性能不佳;适当降低淬火冷却速度后,钢板回火后强度有一定下降,但是冲击性能得到明显提升;继续降低淬火冷却速度,钢板回火后强度进一步下降,但是冲击性能提升有限。经组织分析,2 ℃/s冷速进行冷却淬火时,钢板回火后的组织为铁素体+贝氏体组织,组织中主要是贝氏体;冷却速度降低以后,钢板回火后组织为铁素体+退化珠光体组织,铁素体含量的增加,有利于钢板韧性的提升,残留奥氏体回火后形成的珠光体组织比较细小,能有效保证钢板的强度。通过对钢板的连续冷却转变曲线进行分析,钢板在冷却过程中先开始进行铁素体相变,溶质元素向奥氏体迁移。在钢板冷速较快时,铁素体中的碳化物迁移较少,奥氏体低温时转变成马氏体或者贝氏体;在钢板冷速较慢时,碳化物迁移到奥氏体内,提高奥氏体稳定性并保留到室温,形成残留奥氏体。残留奥氏体在后续的高温回火过程中,转变成珠光体。块状转变形成的铁素体组织与回火过程中形成的细小珠光体有利于钢板的强韧性匹配。  相似文献   

18.
A novel thermomechanical processing was developed in the present study to produce a unique microstructure consisting of fine ferrite grains (i.e. ~4 μm on average) and low-temperature bainite in a relatively low-carbon steel with a modest hardenability. The thermomechanical route consisted of warm deformation of supercooled austenite followed by reheating in the ferrite region and then cooling to the bainitic transformation regime (i.e. 400–200 °C). The low-temperature bainite consisted of high dislocation density bainitic laths and very fine retained austenite films. This microstructure offered a high work hardening rate leading to a unique combination of ultimate tensile strength and elongation. This was due to the presence of ductile fine ferrite grains and hard low-temperature bainitic ferrite laths with retained austenite films. The microstructural characteristics of bainite were studied using optical microscopy in conjunction with scanning and transmission electron microscopy, electron backscatter diffraction and atom probe tomography techniques.  相似文献   

19.
研究了贝氏体等温工艺对3Cr2MoCoWV热作模具钢组织和性能的影响,并与常规淬、回火处理的性能进行对比。研究表明:3Cr2MoCoWV钢经贝氏体等温处理后有大量稳定存在的残余奥氏体,经回火后残余奥氏体以薄膜状存在于马氏体板条间。经380℃等温1 h后再回火,可比常规淬、回火处理获得更好的强韧性配合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号