首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

2.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi0.5Mn1.5O4/Li电池的电化学行为和LiNi0.5Mn1.5O4材料表面形貌。结果表明,当在电解液中添加20% (体积分数)BMIMTFSI时,LiNi0.5Mn1.5O4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g-1,5C下的放电比容量为109.36 mA·h·g-1,比在1 mol·L-1 LiPF6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi0.5Mn1.5O4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

3.
利用氟代碳酸乙烯酯(FEC)和二氟草酸硼酸锂(LiDFOB)优良的成膜性、稳定性和耐高压性,研究了在1 mol/L LiPF6 FEC/碳酸丙烯酯(PC)/碳酸二甲酯(DMC)中加入LiDFOB和三(三甲基硅烷)硼酸酯(TMSB)对高电压材料LiNi0.5Mn1.5O4电化学性能的影响,利用循环伏安法和扫描电镜分析了两种电解液中电化学性能的差异. 结果表明,在FEC基电解液中加入LiDFOB和添加剂TMSB使电解液的分解电位提高至5.5 V(vs. Li/Li+)以上,对铝箔有良好的钝化作用. Li/LiNi0.5Mn1.5O4半电池在含LiDFOB和TMSB的电解液中的初始放电比容量达126.8 mA?h/g,库伦效率为99%,充放电200次后比容量仍为108.2 mA?h/g,容量保持率为85.3%. 而在不含LiDFOB和TMSB的电解液中,电池容量迅速衰减,85次充放电循环后容量保持率仅为60.7%.  相似文献   

4.
以LiH2PO4、LiF和V2O5为原料,蔗糖为还原剂,用碳热还原法合成了Li3V2[(PO4)1-xFx]3/C(x=0、0.02、0.05、0.08、0.10和0.15),并用X射线衍射、Fourier变换红外光谱、循环伏安、交流阻抗谱和恒流充放电技术研究了F-掺杂对材料结构和电化学性能的影响.结果表明:F-掺杂Li3V2(PO4)3/C与纯Li3V2(PO4)3/C均为单斜结构,但少量的F-掺杂可提高电极反应可逆程度和电导率,降低电荷传递阻抗;在所得的F-掺杂材料中,Li3V2[(PO4)0.95F0.05]3/C具有较好的电化学性能.在3.0~4.2V (vs.Li/Li+)循环时,电极的0.5C放电容量为124.4 mA·h/g,50次循环后容量保持率为98.5%,15C下的放电容量为84.7mA·h/g,50次循环后容量保持率为97.4%,而Li3V2(PO4)3/C的仅为59.2 mA·h/g和89.0%.  相似文献   

5.
合成了功能化离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺盐(BMIMTFSI)作为高压锂离子电池电解液添加剂,用于抑制有机溶剂的氧化,以提高碳酸酯类电解液的耐高压性。分别采用充放电测试、电化学交流阻抗(EIS)、循环伏安法(CV)和扫描电子显微镜(SEM)等研究了LiNi_(0.5)Mn_(1.5)O_4/Li电池的电化学行为和LiNi_(0.5)Mn_(1.5)O_4材料表面形貌。结果表明,当在电解液中添加20%(体积分数) BMIMTFSI时,LiNi_(0.5)Mn_(1.5)O_4/Li电池在室温、0.2C下的最高放电比容量是126.81 mA·h·g~(-1),5C下的放电比容量为109.36 mA·h·g~(-1),比在1 mol·L~(-1)LiPF_6-EC/DMC电解液中的放电比容量提高了91.7%;且该电池在0.2C下循环50圈后的放电比容量保持率在95%左右,比用碳酸酯类电解液提高了近10%。SEM结果表明,在碳酸酯类电解液中加入BMIMTFSI后,LiNi_(0.5)Mn_(1.5)O_4电极表面附着了一层均匀且致密的固态电解质界面(SEI)膜。  相似文献   

6.
在锂离子电池电解液1 mol/L六氟磷酸锂/碳酸乙烯酯+碳酸二甲酯+碳酸甲乙酯(体积比为1∶1∶1)溶液中添加丁二酸酐作为提高电池充放电效率的添加剂。 采用恒流充放电测试、循环伏安曲线、线性伏安曲线和电化学阻抗谱等手段,研究了添加剂丁二酸酐对电解液电化学稳定窗口的影响,以及丁二酸酐与锰酸锂材料的相容性。结果表明:在电解液中添加2%(质量分数)的丁二酸酐,提高了LiMn2O4/Li电池常温和高温容量保持率。丁二酸酐可以优先于基础电解液发生少量氧化分解,从而降低了LiMn2O4/Li电池的极化。同时,丁二酸酐也可降低电池循环过程的阻抗。  相似文献   

7.
以Li2CO3、锐钛矿TiO2和石墨烯为原料,采用固相球磨及喷雾干燥相结合的方法制备钛酸锂和钛酸锂/石墨烯复合负极材料。用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)表征了样品的晶体结构及形貌。通过恒流充放电测试样品的电化学性能,考察不同石墨烯添加量对钛酸锂材料电化学性能的影响。当石墨烯添加量质量分数为1%时,钛酸锂/石墨烯复合负极材料(LTO-G-2)具有优异的倍率性能及循环稳定性。在0.2C、0.5C、1C、3C、5C和10C倍率下的充电比容量为172.9mA·h/g、165.7mA·h/g、163.5mA·h/g、157.4mA·h/g、154.0mA·h/g和143.5mA·h/g。5C倍率下经历200次循环,容量保持率为94.8%。循环伏安测试(CV)表明LTO-G-2样品的极化程度是最小的。交流阻抗测试(EIS)结果显示LTO-G-2的电荷转移阻抗(69.6Ω)小于纯的钛酸锂的电荷转移阻抗(140.5Ω)。  相似文献   

8.
徐继开  刘元生  单忠强 《精细化工》2021,38(10):2103-2110,2124
将氟代有机溶剂2,2,3,3-四氟丙基甲基丙烯酸酯(TFPMA)作为双功能添加剂引入碳酸酯电解液体系,考察了TFPMA质量分数对增大润湿性的影响.采用交流阻抗、恒流充放电等测试了添加TFPMA后的锂金属电池性能.采用SEM和XPS表征了循环后的锂金属电极表面.结果表明,1.0%(质量分数,下同)TFPMA的添加使电解液与隔膜间的接触角从54°降至44°,内阻从6.15Ω降至1.94Ω,Li-LiFePO4电池在5 C电流密度下的比容量从66 mA·h/g提升至80 mA·h/g,1 C电流密度下的恒电流循环在100圈时还保持99%以上的库仑效率.TFPMA还促进了Li+的均匀沉积和优良固体电解质界面膜的形成,抑制了锂枝晶,电解液添加了1.0%TFPMA后,Li-Cu电池可以循环100圈以上,而库仑效率没有发生较大下降.循环后电极的SEM图表明,添加了1.0%TFPMA电解液的锂金属负极表面沉积更加平整,有较少的锂枝晶生成.  相似文献   

9.
采用高温固相合成法合成正极材料单斜镍锰酸锂(Li_2Mn_(0.5)Ni_(0.5)O_3),采用X射线衍射技术确定电极材料晶型结构,以循环伏安法及恒流充放电法测试了该材料在中性水溶液中的电化学性能,探讨了电解液中不同离子组合对电池性能的影响。循环伏安法测试表明,在硫酸锂+硫酸锌+硫酸锰电解液中,该电极材料具有更加明显的氧化/还原峰,峰型更尖锐,峰电流更高;恒流充放电测试表明,该电极材料在硫酸锂+硫酸锌+硫酸锰电解液中具有较为明显的放电平台,放电中值电压为1.3 V。首次放电比容量达287.4 mA·h/g,库伦效率为94.8%,循环50次一直稳定在300 mA·h/g左右,并且库伦效率一直稳定在90%以上,表现出优异的电化学性能。  相似文献   

10.
电池在充放电过程中,锰基材料会发生材料体积膨胀、锰的溶解、锌的腐蚀以及水的分解等副反应,从而减少电池使用寿命。为抑制二氧化锰体积膨胀,通过一步水热反应合成了由纳米纤维组成的微球嵌钾化合物(KMn8O16)。结果表明,在3 mol/L ZnSO4和0.1 mol/L MnSO4组成的电解液中加入40%(体积分数)的乙二醇(EG),能一定程度上抑制析氢副反应,同时,EG可以作为低温电解液使用。KMn8O16纳米纤维微球作为锌离子电池正极材料表现出优异的倍率性能和高的比容量。电流密度为200 mA/g时,经过100次循环,容量约为200 mA·h/g,即使在1 000 mA/g大电流密度下循环200次,容量仍能达到150 mA·h/g。  相似文献   

11.
以异佛尔酮二异氰酸酯、聚碳酸酯二元醇和一缩二乙二醇为原料,合成硬段质量分数为30%的聚碳酸酯型聚氨酯(PCPU),将合成的聚氨酯和双三氟甲烷磺酰亚胺锂(LiTFSI)复合制得不同锂盐质量分数的固态聚合物电解质(SPE)。通过红外光谱分析了聚氨酯结构,采用TG、DSC测试了聚氨酯及电解质的热学性能,并采用交流阻抗、线性扫描伏安测试探究了不同LiTFSI质量分数对电解质电化学性能的影响。结果表明,随着LiTFSI质量分数的增加,聚氨酯基固态聚合物电解质的室温离子电导率呈现先增大后减小再增大的趋势,当锂盐质量分数为70%时,制备的电解质离子电导率达到最大值(1.28×10~(–8)S/cm),以此固态电解质与LiFePO4正极组装的固态电池在60℃、0.2 C电流密度时放电比容量为153 mA·h/g,循环100次容量保持率为84%。  相似文献   

12.
低共熔混合锂盐合成Co和Al共掺杂的LiNiO2   总被引:2,自引:0,他引:2  
在空气中,采用低共熔混合物L iNO3-L iOH为锂盐,制备了Co和A l共掺杂锂离子电池正极材料L iN i0.8Co0.15A l0.05O2。XRD分析表明,制得的正极材料具有完整的层状结构。电性能测试表明:在0.5 mA/cm2的放电电流密度和2.7—4.2 V的电压范围内,L iN i0.8Co0.15A l0.05O2首次放电比容量达147.6 mA.h/g,库仑效率达84.3%,第20次的放电比容量为133.8 mA.h/g。该合成新工艺,能制备出电化学性能良好的Co和A l共掺杂的L iN iO2正极材料。  相似文献   

13.
在1 mol/L 六氟磷酸锂/[碳酸乙烯酯(EC)+碳酸二甲酯(DMC)+碳酸甲乙酯(EMC)(体积比为1∶1∶1)]的电解液中加入添加剂丁二腈(SN),用循环伏安(CV)、恒流充放电、电化学阻抗谱(EIS)等方法,研究了丁二腈对电解液的电化学窗口、电池的比容量、电池的首次充放电效率和电池的循环性能的影响。结果表明,在电解液中加入一定量的高纯度丁二腈,能提高电池的比容量、首次充放电效率和拓宽电解液的电化学稳定窗口,从而提高电解液的热稳定性,改善电解液的循环性能。  相似文献   

14.
The electrochemical behavior of Li/V6O13 cells is investigated at room temperature (22 °C) both in liquid electrolyte consisting of oligomeric poly(ethyleneglycol)dimethylether+lithium bis(trifluoromethylsulfonylimide) and composite electrolytes formed by blending the liquid electrolyte with silica nanoparticles (fumed silica). The addition of fumed silica yields a gel-like electrolyte that demonstrates the desirable property of suppressing lithium dendrite growth due to the rigidity and immobility of the electrolyte structure. The lithium/electrolyte interfacial resistance for composite gel electrolytes is less than that for the corresponding base-liquid electrolyte, and the charge-discharge cycle performance and electrochemical efficiency for the Li/V6O13 cell is significantly improved. The effect of fumed silica surface group on the electrochemical performance is discussed; the native hydrophilic silanol surface group appears better than fumed silica that is modified with a hydrophobic octyl surface moiety.  相似文献   

15.
The irreversible consumption of sodium in the initial several cycles greatly led to the attenuation of capacity, which caused the low initial coulombic efficiency (ICE) and obvious poor cycle stability. Pre-sodiation can effectively improve the electrochemical performance by compensating the capacity loss in the initial cycle. Here, carbon-coated sodium-pretreated iron disulfide (NaFeS2@C) has been synthesized through conventional chemical method and used in sodium metal battery as a cathode material. The calculated density of states (DOS) of NaFeS2@C is higher, which implies enhanced electron mobility and improved cycle reversibility. Because of the highly reversible conversion reaction and the compensation of irreversible capacity loss during the initial cycle, the Na/NaFeS2@C battery achieves ultra-high initial coulombic efficiency (96.7%) and remarkable capacity (751 mA·h·g-1 at 0.1 A·g-1). In addition, highly reversible electrochemical reactions and ultra-thin NaF-rich solid electrolyte interphase (SEI) also benefit for the electrochemical performance, even at high current density of 100 A·g-1, it still exhibits a reversible capacity of 136 mA·h·g-1, and 343 mA·h·g-1 after 2500 cycles at 5.0 A·g-1. This work aims to bring up new insights to improve the ICE and stability of sodium metal batteries.  相似文献   

16.
用化学沉淀法在活性炭(AC)表面和微孔内掺杂不同量的氢氧化镍,制备了氢氧化镍-活性炭[Ni(OH)2-AC]复合材料. 用X射线衍射(XRD)和氮气吸附等温线等对活性炭和复合材料进行表征,结果表明,所制材料为b-Ni(OH)2-AC复合材料. 对不同掺杂量的b-Ni(OH)2-AC复合材料的电化学性能进行了研究,循环伏安、恒流充放电实验表明,少量氢氧化镍掺入活性炭表面和微孔中,所得材料的比电容较活性炭有所提高,并具有良好的充放电性能;当氢氧化镍的掺入量为6%(w)时,所制备的超级电容器单电极表现出优良的电化学性能. 以活性炭电极作负极,复合材料作正极制成复合型超级电容器,循环性能测试发现,掺入6%(w)氢氧化镍的复合材料制成的Ni(OH)2-AC/AC复合型超级电容器比电容高达330.7 F/g,比活性炭(AC/AC)超级电容器比电容(245.6 F/g)提高了34.6%,且Ni(OH)2-AC/AC复合型超级电容器具有更好的循环充放电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号