首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
桥梁主梁结构涡激振动具有三维特性,主梁涡激力沿展向并不完全同步。在均匀流场条件下针对宽高比为5的矩形断面主梁分别进行了振动状态和静止状态风洞试验,对其气动力、尾流风速、表面压力展向相关性等进行研究。结果表明:振动状态矩形断面主梁气动力展向相关系数比静止状态大,涡振锁定区内升力系数相关系数最大值位于锁定区间上升段而非振幅最大处。振动状态矩形断面主梁尾流区顺风向及竖向脉动风速展向相关系数小于其气动力展向相关系数;静止状态矩形断面主梁尾流区顺风向脉动风速和竖向脉动风速展向相关系数沿展向距离呈指数衰减,且不同风速下对应的衰减曲线比较接近。  相似文献   

2.
针对扁平箱形断面梁,在均匀流场中进行了涡激振动节段模型风洞试验,研究了扁平箱梁涡激力的展向相关性。结果显示:在涡振锁定区的振幅下降阶段,升力的展向相关性随着振幅的减小而减弱;在涡振锁定区的振幅上升阶段,升力的展向相关性随着振幅的增大先增强后减弱,升力展向相关系数的最大值出现在振幅上升阶段的某个风速,而不是最大振幅对应的风速;均匀流场条件下,在涡振锁定区内,扁平箱梁涡激力的展向相关性不仅与振幅有关,也与来流风速值有关。  相似文献   

3.
涡激振动是大跨度流线型箱梁桥在低风速下常见的风致振动形式,对桥梁结构的疲劳寿命和行车舒适性有较大影响。为揭示流线型箱梁涡激振动机理,有必要研究其涡激振动的气动力演化规律。以某流线型箱梁桥为对象,通过同步测振测压的风洞试验方法,获得了+5°风攻角下主梁模型的涡激振动响应及表面测点风压时程,对比分析了涡激振动前、涡激振动振幅上升区、涡激振动振幅极值点、涡激振动振幅下降区和涡激振动后五个不同阶段模型表面的平均风压系数、脉动风压系数和涡激力的变化规律。结果表明:在涡激振动的不同阶段,流线型箱梁表面平均风压系数变化不大,而脉动风压系数分布具有明显的演化过程。涡激力在涡激振动振幅上升区、涡激振动振幅极值点及涡激振动振幅下降区有明显的卓越频率,且与结构自振频率相近,涡激振动前和涡激振动后无明显卓越频率。涡激力卓越频率对应的振幅与涡激振动位移振幅正相关,两者同在涡激振动振幅极值点处达到最大。  相似文献   

4.
涡激振动(VIV)是大跨度桥梁在低风速时易发生的具有强迫和自激双重性质的自限幅风致振动现象,桥面栏杆因其会改变主梁的气动外形而对涡激振动有显著的影响。为了揭示倾斜栏杆对流线型箱梁涡激振动特性的影响及作用机理,采用节段模型风洞测压和测振试验方法,研究不同倾斜角度栏杆对流线型箱梁涡振特性和表面风压的影响,分析了主梁涡振响应、平均和脉动风压分布、局部气动力与涡激力的相关性和贡献系数以及相位差。结果表明:当人行道栏杆内倾时,倾斜角度越大,抑振效果越显著。当人行道栏杆外倾时,外倾10°的主梁抑振效果优于外倾20°的主梁;相比常规的垂直栏杆,栏杆向内倾斜20°和向外倾斜10°有显著抑振效果的原因主要有:主梁上、下表面的脉动风压系数大幅度较低,最多降低了61.54%;在主梁上表面大部分区域,局部气动力与涡激力的相关性系数大幅降低,平均降低了约33.33%;在上表面上游前部和下游尾部及下表面大部分区域的涡振贡献系数均有不同程度的降低;上、下表面各测点间相位差变化的连续性被打断,相邻测点间的相位差更加离散化。  相似文献   

5.
许坤  葛耀君 《工程力学》2017,34(2):137-144
该文基于一种用于涡振模拟的两自由度经验模型(尾流振子模型)推导了桥梁节段至实桥涡振振幅转换关系。首先介绍了尾流振子模型的形式及其特点,其次从展向全相关及展向不完全相关两方面推导了节段至实桥涡振振幅转换关系,最后结合实际桥梁对上述过程进行了算例验证,并与现场实测结果进行了比较。研究表明:当不考虑涡激力展向相关性影响时,节段至实桥涡振振幅只与结构振型函数有关,尾流振子模型得到的转换关系与传统经验非线性模型得到的转换关系相同;当考虑涡激力展向相关性时,计算得到的实桥涡振振幅可能小于节段模型结果,涡激力展向全相关条件下得到的计算结果与现场实测结果更接近。因此,当缺少精确的涡激力展向相干函数时,假定涡激力展向全相关计算得到的实桥涡振振幅可能更为可靠。  相似文献   

6.
中央开槽箱梁因其优越的颤振性能而在大跨度桥梁建设中得到应用,但中央开槽存在引发结构大幅涡振的气动稳定性问题。以典型大跨度桥梁中央开槽箱梁断面为对象,进行弹簧悬挂节段模型风洞测压、测振试验。对比研究了扭转涡振锁定风速全过程起振点、上升区中点、振幅极值点、下降区中点及涡振结束点等涡振发展过程箱梁表面气动力演化特性。研究表明,箱梁表面气动力在涡振过程不同阶段具有明显的变迁历程,气动力特性与涡振响应有明显的同步演化关系。分布气动力对涡激力的贡献与扭转涡振振幅呈正相关关系,均在振幅极值点风速达到最大,下游箱梁上下表面后部区域及上游箱梁上表面前部区域对涡激力贡献较大,前两者起增强作用,后者起抑制作用,这些区域的气动力是引起中央开槽箱梁扭转涡振的主要原因。与闭口箱梁上下表面下游分布气动力对整体涡激力贡献相互抵消效应相比,中央开槽使得下游箱梁上下表面分布气动力均对整体涡激力起增强作用,这是中央开槽箱梁相比闭口箱梁涡振效应更加突出的重要原因。  相似文献   

7.
当细长结构的驰振临界风速位于涡激共振风速锁定区间内或者接近时,存在涡激共振与驰振两种不同类型风振现象耦合的可能。该文对这两种振动耦合进行了理论推导并建立了相关的耦合振动预测模型;根据3个大长细比钝体构件的工程实例,通过数值模拟和风洞试验等手段获得的相关风振参数分别估算了两类振动的临界风速与锁定区间。由风洞试验测得的构件实际振动曲线与预测模型吻合良好,从而证实了一定条件下构件涡激共振和驰振存在耦合的可能,定性地说明了在两种不同振动机理下产生的气动负阻尼会相互叠加并共同抵消结构机械阻尼,使涡激共振幅值增大,驰振临界风速提前。  相似文献   

8.
探究涡振机理是桥梁涡激振动效应评价与控制的重要前提。立足于涡振发展完整过程中多尺度气动力(宏观整体涡激力与局部分布压力)与结构效应同步演变特性分析,从涡激气动力及其对结构行为作用机制角度揭示涡振机理。以典型大跨度桥梁流线型闭口箱梁断面为研究对象,实现了弹性悬挂节段模型同步测力、测振和测压风洞试验,精确获取了整体涡激力时频演变特征。对涡振过程风速关键结点模型表面气动力进行分析,可知箱梁整体涡激力特性在涡振发生前、锁定区上升区、振幅极值点、下降区以及涡振后等不同时期具有明显的变迁历程:上表面下游、下表面下游与下游风嘴转角区域分布气动力对涡激力的贡献、整体涡激力幅值等均与涡振振幅呈正相关关系,与涡振振幅同时达到最大。在锁定区内,涡激力高次谐波成分显著变化。在振幅极值点时,二次谐波成分与基波的比例最小。总之,涡振过程气动力特性与涡振响应同步演化,尤其是上表面下游、下表面与下游风嘴转角附近区域气动力演变特性显著,前者对整体涡激力起主要增强作用,而后者对整体涡激力起主要抑制作用,这些区域气动力是引起涡振的主要原因。  相似文献   

9.
涡激振动是大跨度桥梁在低风速易发的自限幅风致振动现象。针对典型流线闭口箱梁断面,分别进行了1∶70和1∶20主梁节段模型同步测振、测压风洞试验,对应以梁高为特征尺寸雷诺数范围分别为6.08×10~3~2.28×10~4和1.06×10~4~1.40×10~5,研究了雷诺数效应对箱梁涡振响应及表面气动力时频特性的影响。+3°初始攻角下,主梁断面存在明显涡振现象。与小比尺模型相比,大比尺模型竖向涡振发生风速低,振幅大,且出现了小比尺模型未观测到的扭转涡振现象。分别选取典型风速结点,进行表面气动力时频特性分析表明:不同雷诺数条件下,表面平均风压系数、压力系数根方差及分布气动力与涡激力相位差空间分布均有所不同,表现出显著的雷诺数效应;高雷诺数时,上表面下游、中上游和下表面区域气动力对涡激力贡献较大,其中上表面下游区域气动力对涡激力起增强作用,其它区域气动力对涡激力起抑制作用;低雷诺数时,上表面中上游区域气动力对涡激力几乎无贡献,上表面下游区域气动力对涡激力的贡献与高雷诺数时相近,下表面区域和迎风面斜腹板区域气动力对涡激力抑制作用远小于高雷诺数时。特别是下表面与下游风嘴转角附近区域气动力对涡激力抑制作用远大于高雷诺数时,可推断这正是低雷诺数时涡振幅值远小于高雷诺数时的主要原因。  相似文献   

10.
采用二维非定常雷诺平均N-S方程和剪应力运输k-ω模型,结合四阶龙格-库塔法,选取4种不同入射角(α)对二自由度圆柱涡激振动响应影响进行数值研究。比较了不同来流角度下圆柱涡激振动幅值、结构振动频率、锁定区间、漩涡脱落模式、斯特劳哈尔数、水动力系数和捕能效率的影响。数值结果表明,来流角度变化会使圆柱涡激振动响应产生多频率特性,且随着来流角度的增加y方向振幅逐渐减小,x方向振幅逐渐增大。不同来流角度下涡激振动响应均产生明显的锁定现象,锁定区间宽度随来流角度的变化不明显。但随着来流角度的增加,y方向力系数均方根与x方向力系数均值均有下降的趋势。  相似文献   

11.
引入受迫振动试验所得流体力系数库,采用全新的锁定判定区间及锁定准则,针对柔性立管振荡流条件下涡激振动问题提出了一套可供选择的时域预报数值方法。涡激振动流体力由瞬时来流速度及立管截面运动共同决定,相关流体力系数为无因次幅值及频率的函数。基于上述方法对某4 m立管模型不同KC数及最大约化速度的振荡流工况进行模拟,预报结果与相应试验实测吻合较好,并捕捉到振幅调制、迟滞、频率转换及高频谐振等现象。进而,对于不同KC数及最大约化速度组合的振荡流工况下立管动力响应表现出的诸多有别于定常流条件的特性,从涡激振动发生机理层面进行分析讨论并给出合理解释。最后,通过对振荡流与均匀流下立管涡激振动响应进行对比发现,在流速相当的条件下,振荡流工况的涡激振动均方根位移大于对应均匀流工况的对应值;而当最大约化速度相同时,较小的KC数对应较大的涡激振动均方根位移。  相似文献   

12.
斜拉索的风雨振和涡激振动是广受关注的风致振动问题,为了抑制风雨振,在斜拉索表面设置纵向肋条,是常用的气动措施之一。纵向肋条的参数对涡激振动性能的影响,以及对斜拉索气动力的影响,是值得研究的问题。通过风洞试验,在斜拉索表面布置了宽度和高度均为5 mm的长方体肋条,研究了2根肋条在不同位置α下,斜拉索的气动力及涡激振动的变化规律。结果表明:对于气动力,当布置的肋条位置α≥25°时,雷诺数对斜拉索的风压分布基本没有影响;当布置的肋条夹角α≤30°时,有肋条斜拉索的平均阻力系数均小于无肋条斜拉索;当布置的肋条位置α≥35°时,斜拉索的平均阻力系数和平均升力系数不随雷诺数发生变化,而当肋条位置α=60°时,斜拉索的平均阻力系数达到最大值,约为1.7。对于涡激振动,在肋条位置α=55°的工况下,斜拉索的涡激振动被完全抑制,可以运用在实际工程以抑制斜拉索及相关细长柱体结构的涡激振动;但当位置为60°时,斜拉索的涡激振动振幅虽然比无肋条状态有所减小,但涡振的风速锁定区间会被放大,在实际工程中应充分考虑这一现象。  相似文献   

13.
采用范德波尔振子类涡激气动力模型,通过能量平衡原理,推导了涡激共振过程中结构的振幅增量、初始气动阻尼、非线性气动阻尼三者之间的基本关系,进而得出模型中气动力参数ε与振幅yT之间关系的识别原理。基于某扁平箱梁桥梁断面的节段模型涡振试验结果,对范德波尔类涡激气动力模型参数随振幅的演变关系进行了识别。结果表明,在涡激共振锁定区间内,随着振幅的增加,参数ε呈单调下降的趋势。与之相反的是,参数ε形成的非线性气动阻尼比却呈非线性增长的规律。当参数ε相关的非线性气动阻尼、初始气动阻尼、结构阻尼三者之和为零时,结构达到稳定的涡振极限环状态。研究表明:初始气动阻尼特性决定了结构能否起振而形成涡振锁定区间;识别出模型参数随振幅的变化关系后,高于试验阻尼的结构涡振响应具有可预测性。  相似文献   

14.
大跨度悬索桥的涡激振动发生频率较高,严重时将影响到行车安全性和舒适度。为了能及时预测大跨度悬索桥的涡激振动,以某跨海大桥为例,依托其结构监测系统长期监测数据,选取了顺风向平均风速、风向角、能量集中系数以及加速度均方根(RMS)作为涡激振动发生的特征参数,根据特征参数与涡激振动的相关性,构造了跨海大桥涡激振动的动态监控预测模型,建立了独立的涡激振动动态监控系统。结果表明:涡振发生时风向角主要分布在300°~330°与120°~150°;能量集中系数(功率谱密度之比W P2/W P1)小于0.1;主桥振动加速度均方根值大于5 cm/s 2;构造的系统模型预测识别率达到72%,建立的涡激振动动态监控系统识别准确率达到93%,同时开发了涡激振动预警App,实际预警效果良好,可为同类型桥梁的涡激振动预测提供借鉴。  相似文献   

15.
涡激振动是大跨度桥梁在低风速时易发的自限幅风致振动现象,设置栏杆扶手抑流板为典型涡振抑制措施。以某典型闭口箱梁断面为研究对象,进行了大尺度节段模型测振、测压风洞试验和CFD数值模拟,结合涡振响应、表面风压时频特性和流场特征,对比阐述了栏杆扶手抑流板抑振机理。原始断面在+3°初始攻角下出现明显竖向涡振现象,且振幅超过规范允许值。设置栏杆扶手抑流板后,涡振消失。原始断面涡振主要由气流分别在边防撞栏和检修轨道处诱导并在上下表面中部区域分别形成的主导涡引起,即‘双旋涡模式’引起的周期性气动力是涡振发生的内在机理。设置栏杆扶手抑流板主要是改变了断面上表面区域流场分布,气流受抑流板干扰,在其后产生连续的旋涡脱落,改变了下方气流移动路径,下方气流近乎水平通过边防撞栏区域,避免了边防撞栏横栏角部的流动分离,抑制了主导原始断面涡振的上表面主导涡,完全破坏了‘双旋涡模式’,极大降低了局部气动力与涡激力之间同步相关性及表面压力脉动;同时表面气动力脉动频率随机离散化,模型表面各区域气动力对涡激力的贡献均明显下降,无法激发整体结构涡振效应,故涡振消失。  相似文献   

16.
为研究大跨度桥梁常用扁平箱梁带防撞栏杆时的高阶模态涡激振动(VIV)特性,基于雷诺时均Navier-Stokes(RANS)方程、SST k-ω湍流模型和动网格技术求解扁平箱梁的绕流场并获得气动力,将Newmark-β算法代码嵌入到用户自定义函数(UDF)求解该气动力作用下的桥梁动力响应,开展了大带东桥主桥加劲梁断面高阶模态涡激振动响应的预测,模拟雷诺数为3.18×10~4~6.10×10~4。获得了扁平箱梁断面随折减风速变化的高阶涡振响应振幅根方差(RMS)曲线和加速度时程,预测了与文献较一致的高阶模态涡激振动锁定区间。研究了阻尼比和来流风攻角对扁平箱梁高阶模态涡振响应幅值和加速度的影响,表明随着阻尼比的增大高阶模态涡激振动响应逐渐变小甚至消失,而来流风攻角只有大于2°时才会发生显著的高阶模态涡激振动。  相似文献   

17.
对于某类大宽高比桥梁断面或者钝体形式断面,在基于同一组试验参数的节段模型风洞试验中,能够实测到相同振型两个分离的涡振锁定区间现象,并且两个区间内振动频率一致,这与一个断面对应一个Strouhal数的理论不相符合。为了进一步研究这类非常规振动形式的气动机理,以一组宽高比为6的矩形断面为研究对象,基于风洞试验中实测的两个独立的涡振锁定区间响应数据,采用流体动力学软件Fluent开展了相应的数值模拟研究。数值计算获取了与风洞试验一致的两个独立分离的涡振锁定区间风振曲线,并且在区间跨度以及幅值关系上均吻合良好,然后通过Fluent提取了前后两个涡振锁定区间内的气动力和尾流漩涡进行了对比研究。研究结果表明,第一个锁定区间内的尾流漩涡呈现出经典的卡门涡街形态,第二个区间内的尾流涡模态则主要表现为非典型的"鱼尾摆动"形态,两个涡振区间的尾流形态完全不同;在两个独立的锁定区间内,气动升力与位移响应之间始终存在着相位差,并且均随着锁定区间的发展而持续增大,第一个锁定区间相位差的跳跃程度明显大于第二个锁定区间。  相似文献   

18.
涡激力沿主梁跨向具有偏相关性,基于Scanlan涡激力经验线性模型,假定涡激振动风速下,整个梁段涡脱频率锁定,提出适用于变截面连续梁桥的三维涡激力经验线性模型,从而建立节段模型与变截面梁实桥之间涡激振动幅值之间的关系。通过变截面梁几个典型位置截面的节段模型风洞试验,获得描述整个变截面主梁三维涡激力经验线性模型等效参数,实现对整个变截面连续梁桥涡激振动响应的评估。并通过某典型的三跨变截面连续钢箱梁桥涡激振动风洞试验,验证了理论的有效性。  相似文献   

19.
涡激振动(vortex induced vibration, VIV)是大跨度桥梁常发生的一种振动,易造成结构疲劳破坏,掌握主梁外形对涡激振动的影响十分必要。为了研究不同位置桥侧护栏对闭口流线型箱梁涡激振动特性的影响及作用机理,通过节段模型风洞试验,分别研究了桥侧护栏位置下主梁的涡激振动响应、风压分布、升力系数、气动力相位差及涡激振动贡献系数。研究结果表明,迎风侧护栏内移有利于抑制竖弯涡激振动,但背风侧护栏内移会略微增大涡激振动响应。迎风侧护栏内移会降低主梁升力绝对值,增加气动力相位差的离散性,也降低各位置的涡激振动贡献系数,这被认为是涡激振动被抑制的原因。  相似文献   

20.
采用模型试验的方法研究了均匀流下柔性立管的涡激振动(VIV)响应特性及涡激力载荷特性。对均匀流场中柔性立管的VIV响应特性进行了分析,而后通过欧拉-伯努利梁动态响应控制方程和最小二乘法求取了柔性立管顺流向(IL)和横流向(CF)的涡激力系数。研究结果表明:均匀流下柔性立管的VIV为位移和主导频率不随时间变化的稳态响应,顺流向涡激振动的主导频率为横流向的2倍;柔性立管的激励系数与强迫振动试验获得的系数不一致,无因次频率处于激励区间的激励系数存在负值,激励系数不仅和无因次频率及无因次振幅相关,还与CFIL方向位移相位角相关;在无因次频率0.13~0.22时,横流向的附加质量系数在1.5~3.0振荡变化;而顺流向的附加质量系数在无因次频率在0.26~0.42内从-1.0迅速增大到1.2后基本保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号