首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Choline acetyltransferase (ChAT) is a specific phenotypic marker of cholinergic neurons. Previous reports showed that different upstream regions of the ChAT gene are necessary for cell type-specific expression of reporter genes in cholinergic cell lines. The identity of the mouse ChAT promoter region controlling the establishment, maintenance, and plasticity of the cholinergic phenotype in vivo is not known. We characterized a promoter region of the mouse ChAT gene in transgenic mice, using beta-galactosidase (LacZ) as a reporter gene. A 3,402-bp segment from the 5'-untranslated region of the mouse ChAT gene (from -3,356 to +46, +1 being the translation initiation site) was sufficient to direct the expression of LacZ to selected neurons of the nervous system; however, it did not provide complete cholinergic specificity. A larger fragment (6,417 bp, from -6,371 to +46) of this region contains the requisite regulatory elements that restrict expression of the LacZ reporter gene only in cholinergic neurons of transgenic mice. This 6.4-kb DNA fragment encompasses 633 bp of the 5'-flanking region of the mouse vesicular acetylcholine transporter (VAChT), the entire open reading frame of the VAChT gene, contained within the first intron of the ChAT gene, and sequences upstream of the start coding sequences of the ChAT gene. This promoter will allow targeting of specific gene products to cholinergic neurons to evaluate the mechanisms of diseases characterized by dysfunction of cholinergic neurons and will be valuable in design strategies to correct those disorders.  相似文献   

2.
We have previously observed that maternal exposure to lead (Pb) results in a reduction of levels of mRNA coding for cholineacetyltransferase (ChAT) in the septum of developing rat without affecting the dams. Here we report that Pb similarly affects the expression of vesicular acetylcholine transporter (VAChT) mRNA in the rat septum. In close agreement with the time course of ChAT mRNA expression, septal VAChT mRNA levels increased from 30% at postnatal day 7 to 78% and 100% of adult levels at days 14 and 21, respectively. Maternal exposure to 0.2% lead acetate in drinking water from gestational day 16 resulted in an approximately 30% reduction of VAChT in 7 and 21-day-old rat pups without affecting VAChT mRNA levels in the dams. These results indicate a developmental stage-dependent interference by Pb with ChAT/VAChT gene expression in the rat septum.  相似文献   

3.
4.
5.
Choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) are both encoded by the cholinergic gene locus from which, in the rat, five different species of ChAT mRNA and three different species of VAChT mRNA are produced. So far, discrimination between mRNA subtypes has been possible only in CNS homogenates or in cell cultures. In this study, cardiac neurons were microdissected from frozen sections of rat heart using a u.v. laser and harvested using a micromanipulator. RT-PCR demonstrated the expression of the non-coding R-exon and splicing to R1-type mRNA in the majority of cardiac neurons. The technique presented here is the first to allow subtype analysis of cholinergic locus mRNA species in neurons in situ.  相似文献   

6.
Previous studies have indicated that neuro-endocrine cells store monoamines and acetylcholine (ACh) in different secretory vesicles, suggesting that the transport proteins responsible for packaging these neurotransmitters sort to distinct vesicular compartments. Molecular cloning has recently demonstrated that the vesicular transporters for monoamines and ACh show strong sequence similarity, and studies of the vesicular monoamine transporters (VMATs) indicate preferential localization to large dense core vesicles (LDCVs) rather than synaptic-like microvesicles (SLMVs) in rat pheochromocytoma PC12 cells. We now report the localization of the closely related vesicular ACh transporter (VAChT). In PC12 cells, VAChT differs from the VMATs by immunofluorescence and fractionates almost exclusively to SLMVs and endosomes by equilibrium sedimentation. Immunoisolation further demonstrates colocalization with synaptophysin on SLMVs as well as other compartments. However, small amounts of VAChT also occur on LDCVs. Thus, VAChT differs in localization from the VMATs, which sort predominantly to LDCVs. In addition, we demonstrate ACh transport activity in stable PC12 transformants overexpressing VAChT. Since previous work has suggested that VAChT expression confers little if any transport activity in non-neural cells, we also determined its localization in transfected CHO fibroblasts. In CHO cells, VAChT localizes to the same endosomal compartment as the VMATs by immunofluorescence, density gradient fractionation, and immunoisolation with an antibody to the transferrin receptor. We have also detected ACh transport activity in the transfected CHO cells, indicating that localization to SLMVs is not required for function. In summary, VAChT differs in localization from the VMATs in PC12 cells but not CHO cells.  相似文献   

7.
8.
The concept that galanin (GAL) is cosecreted with acetylcholine (ACh) into the ventral hippocampus is a major component of the current model delineating GAL regulation of the cholinergic memory pathways in the rat. Although GAL-immunoreactivity coexists in 50-70% of cholinergic neurons in the basal forebrain (BF) of colchicine-treated rats, the actual coexistence of these neurotransmitters in the basal state may be lower, because colchicine treatment was recently shown to both induce GAL gene expression and inhibit choline acetyltransferase (ChAT) gene expression in this brain region. We have used single and double in situ hybridization histochemistry to examine the distribution and coexistence of GAL and ChAT mRNAs in the BF of male and female rats. Compared with other forebrain regions, few GAL mRNA-expressing neurons are present within the cholinergic fields of the BF. The greatest number of GAL mRNA-expressing cells in this region are located within the nucleus of the horizontal limb of the diagonal band; but, even in this region, they represent only a small percentage (<20%) of ChAT mRNA-expressing cells. Our results indicate that few cholinergic neurons in the rat BF coexpress GAL mRNA and suggest that, in the basal state, GAL is not widely cosecreted with ACh into hippocampal memory centers.  相似文献   

9.
The vesicular acetylcholine transporter (VAChT) mediates ACh storage in synaptic vesicles by exchanging cytoplasmic ACh with vesicular protons. This study sought to determine the stoichiometry of exchange by analysis of ligand binding and transport kinetics. The effects of different pH values inside and outside, external ACh concentrations, and electrical potential gradients on ACh transport by vesicles isolated from the electric organ of Torpedo were determined using a pH-jump protocol. The equilibrium binding of a high-affinity analogue of ACh is inhibited by protonation with a pKa of 7.4 +/- 0.3. A two-proton model fits the transport data much better than a one-proton model does, and uptake increases at more positive internal electrical potential, as expected for the two-proton model. Thus, the results support the two-proton model. The transport cycle begins with binding of external ACh to outwardly oriented site 2 (KACho = 20 mM) and protonation of inwardly oriented site 1 (pKa1 = 4.73 +/- 0.05). Loaded VAChT reorients quickly (73 000 min-1) and releases ACh to the inside (KAChi = 44 000 mM) and the proton to the outside. Unloaded, internally oriented site 2 binds a proton (pKa2 = 7.0), after which VAChT reorients (150 +/- 20 min-1) in the rate-limiting step and releases the proton to the outside to complete the cycle. Rate constants for the reverse direction also were estimated. Two protons provide a thermodynamic driving force beyond that utilized in vivo, which suggests that vesicular filling is regulated. Other phenomena related to VAChT, namely the time required to fill synaptic vesicles, the fractional orientation of the ACh binding site toward cytoplasm, orientational lifetimes, and the rate of nonquantal release of ACh from cholinergic nerve terminals, were computer-simulated, and the results are compared with physiological observations.  相似文献   

10.
In order to study the effect of synaptic contact on the amounts of choline acetyltransferase (ChAT) and acetylcholine (ACh) in the nerve terminals and on their ability to release ACh, a freeze-thaw procedure was developed as a means to induce long lasting degeneration of rat soleus muscle. It was found that 4 days after the freeze thaw procedure the preparation did not contract upon direct electric stimulation and the level of creatine kinase (CK) was below detection. The preparation contained about 15% of the ChAT activity and 15% of the ACh content of the controls. The ACh release evoked by 50 mM KCl was 25% of controls, but it was, when expressed as a fraction of the ACh content, about twice as high as that in control muscles. At day 12, the preparation still did not contract and the level of CK was less than 5% of controls. The ChAT activity and the ACh content were 40% and 20% of controls, respectively. However, no release of ACh could be evoked by 50 mM KCl. At days 28 and 58 the preparation contracted upon stimulation of the nerve; the CK activity had recovered to about 20% and the ACh content to 40%, while the ChAT activity did not increase above 40%. The KCl-evoked ACh release had recovered to 20-30% of controls. The results indicate that freezing destroyed muscle cells and most intramuscular nerve branches. Subsequent regeneration of muscle fibres was slow, probably because freezing had killed many satellite cells in the muscle. Because the ChAT activity at day 12 had recovered when CK was almost absent and the preparation failed to contract, we conclude that there was expression of ChAT activity in 'nerve terminals' which do not make contact with regenerated muscle cells, although little if any ACh was released from these sites.  相似文献   

11.
We used a sensitive and specific radioimmunoassay for acetylcholine (ACh), and detected significant amounts of ACh in the blood of various mammals, including humans. About 60% of human blood ACh was localized in mononuclear leukocytes. Human leukemic T-cell lines, used as T-lymphocyte models, contained both ACh and choline acetyltransferase (ChAT) activity. Furthermore, ChAT mRNA and protein were detected in the T-cell line MOLT-3. Phytohemagglutinin, a T-cell activator, increased both synthesis and release of ACh by MOLT-3 cells. Muscarinic receptor subtype mRNA expression was confirmed in various T-cell lines. These findings indicate that ACh synthesized by ChAT in T-lymphocytes acts on the muscarinic receptors on lymphocytes in autocrine and/or paracrine pathways and suggest that ACh in blood functions as a modulator of T-cell-dependent immune responses.  相似文献   

12.
The vesicular acetylcholine transporter (VAChT) is responsible for the transport of the neurotransmitter acetylcholine (ACh) into synaptic vesicles using an electrochemical gradient to drive transport. Rat VAChT has a number of aspartate residues within its predicted transmembrane domains (TM) and cytoplasmic loops, which may play important structural or functional roles in acetylcholine transport. In order to identify functional charged residues, site-directed mutagenesis of rVAChT was undertaken. No effect on ACh transport was observed when any of the five aspartate residues in the cytoplasmic loop were converted to asparagine. Similarly, changing Asp-46 (D46N) in TM1 or Asp-255 (D255N) in TM6 had no effect on ACh transport or vesamicol binding. However, replacement of Asp-398 in TM10 with Asn completely eliminated both ACh transport and vesamicol binding. The conservative mutant D398E retained transport activity, but not vesamicol binding, suggesting this residue is critical for transport. Mutation of Asp-193 in TM4 did not affect ACh transport activity; however, vesamicol binding was dramatically reduced. With mutant D425N of TM11 transport activity for ACh was completely blocked, without an effect on vesamicol binding. Activity was not restored in the conservative mutant D425E, suggesting the side chain as well as the negative charge of Asp-425 is important for substrate binding. These mutants, as well as mutant D193N, clearly dissociated ACh binding and transport from vesamicol binding. These data suggest that Asp-398 in TM10 and Asp-425 in TM11 are important for ACh binding and transport, while Asp-193 and Asp-398 in TM4 and TM10, respectively, are involved in vesamicol binding.  相似文献   

13.
Traumatic brain injury (TBI) results in chronic derangements in central cholinergic neurotransmission that may contribute to posttraumatic memory deficits. Intraventricular cannula (IVC) nerve growth factor (NGF) infusion can reduce axotomy-induced spatial memory deficits and morphologic changes observed in medial septal cholinergic neurons immunostained for choline acetyltransferase (ChAT). We examined the efficacy of NGF to (1) ameliorate reduced posttraumatic spatial memory performance, (2) release of hippocampal acetylcholine (ACh), and (3) ChAT immunoreactivity in the rat medial septum. Rats (n = 36) were trained prior to TBI on the functional tasks and retested on Days 1-5 (motor) and on Day 7 (memory retention). Immediately following injury, an IVC and osmotic pump were implanted, and NGF or vehicle was infused for 7 days. While there were no differences in motor performance, the NGF-treated group had significantly better spatial memory retention (P < 0.05) than the vehicle-treated group. The IVC cannula was then removed on Day 7, and a microdialysis probe was placed into the dorsal hippocampus. After a 22-h equilibration period, samples were collected prior to and after administration of scopolamine (1 mg/kg), which evoked ACh release by blocking autoreceptors. The posttraumatic reduction in scopolamine-evoked ACh release was completely reversed with NGF. Injury produced a bilateral reduction in the number and cross-sectional area of ChAT immunopositive medial septal neurons that was reversed by NGF treatment. These data suggest that cognitive but not motor deficits following TBI are, in part, mediated by chronic deficits in cholinergic systems that can be modulated by neurotrophic factors such as NGF.  相似文献   

14.
We studied the postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors in the rat hippocampus. To this end, hippocampal slices (350 microns thick) from rats of various postnatal ages (postnatal day 3 [P3] to P16) were preincubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 2 ms, 3 Hz, 60 mA) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the cholinergic ingrowth. In hippocampal slices preincubated with [3H]choline, the electrically evoked overflow of 3H at S1 increased from 0.11 (P3) to 0.81% of tissue 3H (P16), the latter value being still much lower than that of hippocampal slices from adult rats (2.89% of tissue 3H). Already at P3 the evoked overflow of 3H was Ca(2+)-dependent and sensitive to tetrodotoxin, indicating an action potential-evoked exocytotic mechanism of ACh release. The muscarinic agonist oxotremorine (1 microM) significantly inhibited the evoked ACh release in hippocampal slices with increasing effectivity from P4 to P16; no significant effect was detectable at P3. The ACh esterase inhibitor physostigmine and the muscarinic antagonist atropine (1 microM, each) exhibited significant inhibitory and facilitatory effects, respectively, only at P15-16. The specific activities of both hippocampal HACU (pmoles/mg protein/min) and ChAT (nmoles/mg protein/min) continuously increased from P3 to P16. It is concluded (1) that cholinergic nerve terminals arriving at the hippocampal formation during postnatal ingrowth are already endowed with the apparatus for action potential-induced, Ca(2+)-sensitive (exocytotic) ACh release; (2) that, in contrast, the expression of presynaptic muscarinic autoreceptors on these cholinergic axon terminals is delayed; and (3) that autoinhibition due to endogenous ACh develops even later, probably when the density of presynaptic terminals in the hippocampus and hence, the concentration of released ACh has reached a suprathreshold value.  相似文献   

15.
The selectivity of the irreversible inhibition of high-affinity choline uptake (HACU) by hemicholinium mustard (HCM; 2,2'-(4,4'-biphenylene)bis[2-hydroxy-4-(2-bromoethyl)-morpholine] hydrochloride) with respect to other cholinergic proteins and other sodium-dependent transport systems was examined. Preincubation of rat forebrain membranes with HCM, followed by washing and measurement of [3H]-hemicholinium-3 binding to the high-affinity choline transporter, was shown to decrease binding capacity (Bmax) by 70% without affecting the apparent affinity of the ligand. However, a similar preincubation, wash and binding experiment using [3H]-NMS as a ligand for muscarinic receptors showed no HCM effect on binding parameters. To measure the effects of HCM on choline acetyltransferase (ChAT), synaptosomes were incubated in HCM, then washed. The synaptosomes were lysed and ChAT activity was measured. Treatment with 50 microM HCM, a concentration that inhibits 100% of synaptosomal HACU, results in a 24% decrease in ChAT activity. HCM demonstrates little residual inhibition of other sodium-dependent neurotransmitter transporter transporters: preincubation with 50 microM HCM results in a decrease of 12% in transport of [3H]-dopamine and a decrease of 6% in the transport of [3H]-GABA. The binding of HCM, like that of hemicholinium-3 is sodium-dependent. HCM preincubation in the presence of sodium results in inhibition of HACU to 32% of control; in the absence of sodium HACU is 65% of control. This represents a loss of 51% of the observed irreversible inhibition produced by HCM. Irreversible inhibition by HCM can also be prevented by co-incubation with hemicholinium-3. Co-incubation with hemicholinium-3 results in residual HACU inhibition that decreases from 51% (HCM alone) to 28% (HCM + hemicholinium-3). When atropine instead of hemicholinium-3 is co-incubated with HCM, HCM still inhibits 40% of transport, demonstrating the pharmacological specificity of the protective effect of hemicholinium-3. Experiments in the guinea-pig myenteric plexus preparation demonstrate a gradual recovery from the residual effects of HCM. Evoked ACh release decreases to 24% immediately following treatment with 1 microM HCM. After 2 hr of recovery, tissues have recovered to about 50% of control levels, after which recovery continues at a slower rate.  相似文献   

16.
Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high-affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+- and Cl(-)-dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 microM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl- was varied, a single saturation process with an average apparent equilibrium constant (K(Cl-)) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, K(Na+) approximately 54.8 mM). Analyses of the Na+- and Cl(-)-concentration dependence data suggest that at least two Na+ and one Cl- are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > beta-alanine > L-diaminopropionic acid > guanidinoethane sulfonate > beta-guanidinopropionic acid > chloroquine > gamma-aminobutyric acid > 3-amino-1-propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4alpha-phorbol 12,13-didecanoate but was inhibited significantly by the active phorbol ester phorbol 12-myristate 13-acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.  相似文献   

17.
18.
Following axotomy most medial septal neurons in the adult rat brain have dramatically reduced numbers of choline acetyltransferase (ChAT) positive neurons. Since leukemia inhibitory factor (LIF) promotes cholinergic expression in several neuronal populations, the aim of this study was to determine if LIF would continue to support cholinergic expression in axotomized medial septal neurons. Mini-osmotic pumps were used to infuse saline or LIF into the lateral cerebral ventricle. Counts of ChAT and low-affinity nerve growth factor (p75NGFR) immunostained neurons indicated that LIF-treated animals retained ChAT expression in > 90% of axotomized neurons whereas in saline-infused animals this was < 30%. Also, LIF was equally effective in maintaining p75NGFR expression levels in axotomized medial septal neurons.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号