首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李艳峰 《矿冶》2016,25(4):77-79
对某航段航线获取的大洋热液沉积物选矿尾矿进行了系统的工艺矿物学研究。该尾矿中有价金属元素铜损失严重,含铜为6.06%。铜矿物是以氯铜矿为主,另有微量的硫化铜矿物,其中氯铜矿多以单体形式损失,硫化铜矿物以细粒、微粒包裹体形式赋存在滑石等脉石中。尾矿中的铜经浮选—重选回收效果差,需采用冶金方法对其进行有效的回收。  相似文献   

2.
对TVG7航线获取的大洋热液沉积物进行了系统的工艺矿物学研究。该样品中主要有价金属元素为铜,铜矿物是以氯铜矿为主,其次以辉铜矿及黄铜矿等独立矿物存在。氯铜矿和硫化铜矿物的嵌布粒度粗,脉石矿物主要以滑石为主。研究结果为有效的回收和利用其中的有用矿物提供了基础数据和理论依据。  相似文献   

3.
安徽某铜矿影响铜选矿指标的矿物学因素研究   总被引:1,自引:0,他引:1  
安徽某铜矿为大型热液蚀变强烈的变质原生硫化铜矿床,其中主要的回收矿物为黄铜矿。工艺矿物学研究结果表明,矿石中的铜有8.10%是以墨铜矿的形式存在,而且其中含有12.66%的滑石、蛇纹石等易浮层状脉石矿物,是影响铜选矿指标的重要因素。  相似文献   

4.
采用浮选?浸出工艺处理含铜0.94%的玄武岩型氧化铜矿,该铜矿物氧化率高,嵌布粒度较细,属于低品位难选氧化铜。通过硫化浮选法回收部分氧化铜矿及硫化铜矿,可得到品位为16.2%,回收率为50.7%的浮选铜精矿,通过硫酸浸出法回收浮选尾矿中的细粒级铜矿物,浸出率达87%,此浮选-浸出工艺实现了铜矿物的有效回收。  相似文献   

5.
西藏玉龙铜矿含铜1.6%~1.8%,含硫7.0%~8.5%,矿石性质复杂,易泥化脉石含量高,属于难选矿石。为实现矿石中铜矿物的高效回收,简化现场工艺流程,采用铜优先浮选工艺处理该矿石,即以BK-404作铜矿物的捕收剂,石灰作黄铁矿的抑制剂,在矿浆p H值=9的低碱条件下分步粗选两次,粗精矿不再磨精选三次。试验结果表明,在原矿含铜1.66%的条件下,采用该工艺小型闭路试验可获得含铜20.63%、铜回收率82.24%的铜精矿。铜优先浮选工艺试验指标良好,减少精选浮选机配置容积,减少铜金属循环量和流失量,使铜矿物得到很好的回收,为现场的流程改造提供理论依据。  相似文献   

6.
某氧化铜铜品位为5.55%,氧化率高达99.37%,含泥量大,氧化铜矿物种类多,矿石性质复杂。为了较好的回收该氧化铜矿,首先浮选脱除矿泥及滑石后,采用常规的硫化浮选法回收铜;所脱除矿泥及滑石采用重选回收部分铜;浮选尾矿采用磁选回收部分弱磁性难浮选的氧化铜。该脱泥重选—浮选—磁选联合工艺获得总铜精矿铜品位为19.86%,回收率为76.94%,取得了较好的选矿技术指标。  相似文献   

7.
某硫化铜矿含铜0.65%、硫9.50%、Mg O 5.20%,属于高滑石硅酸镁夕卡岩型铜硫矿。由于矿石中黄铁矿和滑石含量较高,且滑石在磨矿过程中极易发生泥化,恶化浮选环境,造成现场铜浮选指标不理想。为了解决该铜矿中高滑石、高硫对铜浮选的影响,在工艺矿物学研究的基础之上,提出采用"SNA调整剂调浆-CMC抑制滑石-铜硫混合浮选-粗精矿脱药再磨-铜硫分离"工艺。闭路试验获得了铜品位25.71%、回收率82.13%的铜精矿,铜精矿含Mg O小于5%。工艺显著提高了铜回收率,并降低了铜精矿Mg O含量。  相似文献   

8.
某复杂铜铅锌多金属硫化矿,以黄铜矿、方铅矿和铁闪锌矿为主要的铜矿物、铅矿物和锌矿物。为有效回收其中的铜、铅、锌金属及伴生的金、银,开展了矿石工艺矿物学研究和选矿试验研究。结果表明,采用“铜铅混浮再分离-锌浮选”的工艺流程,可获得铜品位为19.05%、铜回收率为74.99%的铜精矿;铅品位为69.03%、铅回收率为75.03%的铅精矿;锌品位为47.87%、锌回收率为72.94%的锌精矿。以及金、银总回收率分别为75.45%和76.86%的工艺指标。  相似文献   

9.
某硫化铜矿含铜0.65%、硫9.50%、Mg O 5.20%,属于高滑石硅酸镁夕卡岩型铜硫矿。由于矿石中黄铁矿和滑石含量较高,且滑石在磨矿过程中极易发生泥化,恶化浮选环境,造成现场铜浮选指标不理想。为了解决该铜矿中高滑石、高硫对铜浮选的影响,在工艺矿物学研究的基础之上,提出采用"SNA调整剂调浆-CMC抑制滑石-铜硫混合浮选-粗精矿脱药再磨-铜硫分离"工艺。闭路试验获得了铜品位25.71%、回收率82.13%的铜精矿,铜精矿含Mg O小于5%。工艺显著提高了铜回收率,并降低了铜精矿Mg O含量。  相似文献   

10.
为了实现某氧硫混合型铜矿的高效回收,产出合格的硫化铜精矿和氧化铜精矿。根据矿石性质和浮选工艺特点,采用先浮选硫化铜矿物,然后在硫化条件下浮选氧化铜矿物的选矿原则流程。针对该流程,分别开展了硫化铜矿物和氧化铜矿物的浮选条件试验,获得了最佳工艺参数,并进行了浮选闭路试验。试验结果表明,以丁基黄药和Z-200的组合作为硫化铜物的捕收剂,以NaHS作为氧化铜矿物的硫化剂、戊基黄药作为氧化铜物的捕收剂,硫化铜矿物浮选采用一粗两扫两精的选别流程,氧化铜矿物浮选采用一粗两扫两精+两精扫的选别流程,可以获得Cu品位为22.72%、Cu回收率为64.12%的硫化铜精矿和Cu品位为25.15%,Cu回收率为20.00%的氧化铜精矿,研究结果为同类型的铜矿开发提供了数据支持和技术参考。  相似文献   

11.
西南某铜矿浮选柱半工业试验研究   总被引:2,自引:0,他引:2  
浮选柱半工业试验首先开展了处理量、循环泵压力、充气量等主要浮选柱工艺条件试验,在此基础上完成了72h的连选试验,获得的铜精矿品位为29.20%,回收率为94.99%,高于同期生产的浮选机指标。此外,旋流-静态微泡浮选柱对于各粒级铜矿物均具有较强的回收能力,其对铜矿中的主要铜物相回收率也高于常规浮选机。  相似文献   

12.
某次生富集带硫铁矿含 S 28. 73%、Cu 0. 61%。 该矿金属矿物以黄铁矿和白铁矿为主,含少量的铜蓝、 辉铜矿、蓝辉铜矿、黄铜矿、黝铜矿、斑铜矿等含铜矿物;脉石矿物以石英和方解石为主。 对该矿进行铜物相分析,铜矿 物以硫酸铜为主,其次为次生硫化铜及少量原生硫化铜。 硫酸铜遇水易溶解,产生大量铜离子,在浮选过程中会活化 黄铁矿造成铜硫分离困难。 同时次生铜矿物不仅易于过磨而增加铜在尾矿中的损失,而且容易罩盖在黄铁矿表面造 成铜硫分离更加复杂。 为了更好地回收该矿中的铜,试验采取水洗+铜优先浮选的方案,通过水洗优先回收硫酸铜中 的铜,再对水洗浸渣进行铜优先浮选,回收硫化铜矿物。 研究结果表明:① 对该矿进行水洗试验,能有效地回收硫酸 铜中的铜,铜回收率为 47. 30%;② 水洗浸渣在磨矿细度为-0. 074 mm 占 70%、石灰用量为 3 000 g / t、硫化钠用量为 3 000 g / t、水玻璃用量为 3 000 g / t、亚硫酸钠用量为 1 800 g / t、BK404 用量为 30 g / t 的条件下,进行闭路浮选流程处 理,最终获得铜精矿 Cu 品位 14. 45%,Cu 回收率 46. 94%;硫精矿 S 品位 46. 10%,S 回收率 96. 22%。 通过试验研究, 该矿铜硫矿物均得到合理回收,研究结果为该类型铜矿资源的有效回收提供了借鉴。  相似文献   

13.
龚大兴 《中国矿业》2015,24(3):137-140
本文针对威宁县某铜矿试验样品,通过光学显微镜、扫描电镜(SEM)、能谱(EDS)和X射线衍射分析技术(XRD)进行了工艺矿物学研究,结果表明原矿为玄武岩型铜矿,Cu的含量为2.2%;铜矿物为自然铜、硅孔雀石和辉铜矿,总量达4%;脉石矿物主要为浊沸石、石英和钠长石。经过计算,铜矿物中铜的相对配分达到了42.28%,辉铜矿18.11%,硅孔雀石39.61%。自然铜和辉铜矿可浮性较好,硅孔雀石可浮性差,且粒度微细,嵌布特征复杂,难以解离,故选矿应着力回收自然铜和辉铜矿,部分硅孔雀石难以通过物理选别方法回收,为合理的损失。  相似文献   

14.
为了更好地选别回收安徽某铜银铅多金属矿,对该矿石进行了工艺矿物学研究,查明了矿石的矿物组成、主要矿物的嵌布特征及铜、银、铅元素赋存状态。结果表明:矿石铜、银、铅品位分别为0.64%、116.63 g/t、0.20%,可回收的有用矿物主要为铜矿物,银可作为伴生元素进行回收,铅品位较低,只能作为杂质脱除;矿石主要铜矿物为斑铜矿、辉铜矿和黄铜矿,常常两者或3种矿物共生嵌布并形成不规则片状,三种铜矿物集合体的嵌布粒度粗细不均,在+0.07 mm粒级的分布率为44.60%;元素Cu主要赋存在斑铜矿中,分布率为79.37%,其次分布在辉铜矿和黄铜矿中,分布率分别为9.52%和6.35%;元素Ag主要赋存在辉银矿中,元素Pb主要赋存在方铅矿中。根据工艺矿物学研究结果,斑铜矿、辉铜矿和黄铜矿是回收的主要目的矿物,辉银矿主要分布在斑铜矿或黄铜矿中,因此大多辉银矿可与铜矿物一起得到回收。由于方铅矿相对易浮,大多方铅矿也会进入铜精矿中从而影响最终精矿品级,因此建议采用浮铜抑铅浮选工艺。  相似文献   

15.
邓丽红 《中国矿业》2021,30(6):159-164
某铁矿含铁25.78%、含铜0.24%、含锌0.33%,铁矿物品位低、嵌布粒度细,采用一次性磨矿-磁选的选矿工艺,难以获得品位大于60%的铁精矿,伴生的低品位铜、锌矿物也一直未能有效回收。本文采用再磨-弱磁选-浮选的选矿工艺,对该矿石进行了铁、铜、锌的综合回收试验研究。结果表明:采用磨矿细度-0.074mm含量75.25%、再磨细度-0.043mm含量95.30%的铁粗精矿再磨-磁选工艺回收铁矿物;石灰、水玻璃、硫化钠为调整剂,DY1和乙黄药为组合捕收剂浮选回收铜矿物;硫酸铜为活化剂、丁黄药和2~#油为组合捕收剂浮选回收锌矿物,获得了铁精矿品位66.02%、回收率80.22%,铜精矿品位19.03%、回收率55.60%,锌精矿品位48.20%、回收率65.88%的试验指标,使该矿石中的铁矿物、伴生铜矿物和锌矿物均得到了有效的回收,为提高难选低品位铁资源综合利用率的研究提供了技术借鉴。  相似文献   

16.
杜文平 《现代矿业》2022,(8):160-163
德兴铜矿尾矿回收厂预富集产品的铜品位为0.15%,其中的铜矿物主要为黄铜矿,主要分布在0.043~0.015 mm粒级,90%的黄铜矿以连生体的形式存在,多数难以充分单体解离;硫矿物黄铁矿含量高,主要以单体形式存在,主要分布在0.05~0.13 mm粒级。为实现其中铜矿物的高效回收,在工艺矿物学研究基础上,以现场工艺流程为参考进行了浮选试验。结果表明,试样在磨矿细度为-0.043 mm占85%的情况下,以亚硫酸钠为抑制剂进行1粗1扫2精低碱度浮选,最终获得了铜品位16.43%、铜回收率63.12%的铜精矿,较好地实现了试样中铜矿物的低碱度回收。  相似文献   

17.
某硫精矿含铜0.41%,铜矿物主要为黄铜矿和辉铜矿,硫矿物主要是磁黄铁矿,其次是黄铁矿,脉石矿物为少量蛇纹石、滑石、绿泥石等易泥化矿物,经镜下鉴定铜矿物与黄铁矿关系密切,基本以较粗的连生体形式存在,而磁黄铁矿基本不含铜。综合考虑矿石性质,确定采用"磁选脱硫—脱泥—浮铜"流程回收铜,全流程获得铜精矿铜品位20.26%,铜回收率73.41%。  相似文献   

18.
某铜矿石铜品位为0.85%, 含金0.90 g/t, 铜氧化率为21.17%。为开发利用该矿石资源, 开展了系统的工艺矿物学研究, 研发了硫化铜矿物与氧化铜矿物同步浮选工艺, 实现了铜和金的综合回收, 经过一次粗选、三次精选和三次扫选闭路试验流程处理, 可以获得铜品位15.36%、含金12.58 g/t的铜金精矿, 铜和金的回收率分别达到70.93%和54.33%。   相似文献   

19.
王刚强 《现代矿业》2023,(3):171-174
安徽某铜熔炼渣含铜1.64%,铜主要以硫化铜和单质铜的形式存在,铜矿物粒度整体偏细,铜矿物集合体主要分布在-0.043 mm,为确定该熔炼渣回收铜资源的合适工艺,进行了浮选试验研究。试验结果表明:采用阶段磨矿工艺,在一段磨矿细度-0.074 mm74.2%、二段磨矿细度-0.045mm98.3%的条件下,通过2粗2精3扫浮选工艺流程,闭路试验获得了铜品位23.33%、铜回收率86.36%的铜精矿,尾矿含铜0.239%的较好指标。  相似文献   

20.
选矿流程产品的工艺矿物学研究可在矿石性质变化、选厂技术改造时为工艺流程的改进提供方向和依据。内蒙某铜铅锌锡多金属矿生产中在锌硫作业中银和铜损失率分别为13.10%和15.64%。为最大限度地提高资源综合利用价值,选择锌硫混合精矿为研究对象,通过赋存状态研究确定了铜、银回收的目的矿物;通过铜、银矿物嵌布关系密切判断出铜、银走向一致,可同步富集。在此基础上,根据黝铜矿、黄铜矿、铜矿物集合体的单体解离度仅为12.84%、33.65%和25.40%,但铜矿物集合体粒度较粗的特点,提出了对铜矿物集合体再磨,获得银铜精矿的技术方案。最终选矿工艺通过提高再磨细度获得了银品位2 699g/t、铜品位为10.02%的高品位银铜精矿,实现了将锌硫混合精矿中原本损失的铜、银加以回收的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号