共查询到19条相似文献,搜索用时 64 毫秒
1.
据统计,在大量的恶意代码中,有相当大的一部分属于诱骗型的恶意代码,它们通常使用与常用软件相似的图标来伪装自己,通过诱骗点击达到传播和攻击的目的。针对这类诱骗型的恶意代码,鉴于传统的基于代码和行为特征的恶意代码检测方法存在的效率低、代价高等问题,提出了一种新的恶意代码检测方法。首先,提取可移植的执行体(PE)文件图标资源信息并利用图像哈希算法进行图标相似性分析;然后,提取PE文件导入表信息并利用模糊哈希算法进行行为相似性分析;最后,采用聚类和局部敏感哈希的算法进行图标匹配,设计并实现了一个轻量级的恶意代码快速检测工具。实验结果表明,该工具对恶意代码具有很好的检测效果。 相似文献
2.
《计算机应用与软件》2015,(8)
针对恶意代码分析检测中静态分析技术难以检测变形、多态代码的问题,提出一种提取恶意代码语义动态特征的方法。该方法在虚拟环境下提取恶意代码动态特征,从而达到保护物理机的目的,提取出的原始特征经过进一步的筛选处理,得到各个代码样本的API调用序列信息。为了使得特征更加有效,改进传统n-gram模型,添加n-gram频次信息以及各API间的依赖关系,构建改进的n-gram模型。实验结果分析部分采用机器学习方法,分别使用了决策树、K近邻、支持向量机、贝叶斯网络等分类器对选定的样本特征进行10折交叉验证。实验结果显示该特征选取在决策树J48下的检测效果最好,可以有效检测采用混淆、多态技术的恶意代码。 相似文献
3.
4.
针对当前恶意代码动态分析中存在的提取特征方式单一、检测率低、误报率高等问题,提出一种线程融合特征分析检测方法。基于传统沙箱分析报告,该方法利用线程号分别建立样本API调用序列,将API线程内的调用顺序及返回值作为API参数构建特征,在特征处理阶段分别用统计、计算两种方法构建两类特征,并将LR(Logistic Regression)算法改进的Vec-LR算法用于二分类判断,并与其他算法及软件进行比较。经实验证明,该方法准确率优于当前主流检测方法,可达94.37%。 相似文献
5.
《计算机应用与软件》2017,(12)
随着移动互联网的快速发展,针对移动平台尤其是Android平台的恶意代码威胁也日益严重。恶意代码分析方法包括静态分析和动态分析两大类。由于静态分析方法难以处理一些经过变形、加密、混淆等技术处理的代码,动态分析已经成为了恶意代码分析领域的发展热点。现有的Android平台动态分析技术存在着分析环境易被识别、分析的代码覆盖率难以保证等问题。如何触发Android平台恶意代码的恶意行为,提高动态分析的全面性是保证动态分析效果的关键问题之一。提出基于UI自动遍历的Android恶意代码动态分析办法,可在一定程度上解决此问题。该方法结合Android平台自身的特色,基于UI元素自动构造不同的执行路径,可有效提高代码分析的全面性。 相似文献
6.
刘星唐勇 《计算机工程与科学》2014,36(3):481-486
恶意代码的相似性分析是当前恶意代码自动分析的重要部分。提出了一种基于函数调用图的恶意代码相似性分析方法,通过函数调用图的相似性距离SDMFG来度量两个恶意代码函数调用图的相似性,进而分析得到恶意代码的相似性,提高了恶意代码相似性分析的准确性,为恶意代码的同源及演化特性分析研究与恶意代码的检测和防范提供了有力支持。 相似文献
7.
基于环境敏感分析的恶意代码脱壳方法 总被引:1,自引:0,他引:1
加壳技术是软件的常用保护手段,但也常被恶意代码用于躲避杀毒软件的检测.通用脱壳工具根据加壳恶意代码运行时的行为特征或统计特征进行脱壳,需要建立监控环境,因此易受环境敏感技术的干扰.文中提出了一种基于环境敏感分析的恶意代码脱壳方法,利用动静结合的分析技术检测并清除恶意代码的环境敏感性.首先,利用中间语言对恶意代码的执行轨迹进行形式化表示;然后,分析执行轨迹中环境敏感数据的来源和传播过程,提取脱壳行为的环境约束;最后,求解环境约束条件,根据求解结果对恶意代码进行二进制代码插装,清除其环境敏感性.基于此方法,作者实现了一个通用的恶意代码脱壳工具:MalUnpack,并对321个最新的恶意代码样本进行了对比实验.实验结果表明MalUnpack能有效对抗恶意代码的环境敏感技术,其脱壳率达到了89.1%,显著高于现有基于动态监控的通用脱壳工具的35.5%和基于特征的定向脱壳工具的28.0%. 相似文献
8.
基于语义的恶意代码行为特征提取及检测方法 总被引:5,自引:0,他引:5
提出一种基于语义的恶意代码行为特征提取及检测方法,通过结合指令层的污点传播分析与行为层的语义分析,提取恶意代码的关键行为及行为间的依赖关系;然后,利用抗混淆引擎识别语义无关及语义等价行为,获取具有一定抗干扰能力的恶意代码行为特征.在此基础上,实现特征提取及检测原型系统.通过对多个恶意代码样本的分析和检测,完成了对该系统的实验验证.实验结果表明,基于上述方法提取的特征具有抗干扰能力强等特点,基于此特征的检测对恶意代码具有较好的识别能力. 相似文献
9.
传统的恶意代码检测方法通常以固定的指令或字节序列这些具体特征作为检测依据,因此难以检测变形恶意代码.使用抽象特征是解决该问题的一个思路.本文针对恶意代码常用的变形技术,即等价指令替换、垃圾代码插入以及指令乱序进行研究.定义了一种抽象特征,同时提出了依据该抽象特征检测变形恶意代码的方法.最后,以典型变形病毒Win32.Evol为对象进行了实验,将该方法与其它方法进行了对比.实验结果验证了该方法的有效性. 相似文献
10.
11.
现有恶意软件相似性度量易受混淆技术影响,同时缺少恶意软件间复杂关系的表征能力,提出一种基于多重异质图的恶意软件相似性度量方法RG-MHPE (API relation graph enhanced multiple heterogeneous ProxEmbed)解决上述问题.方法首先利用恶意软件动静态特征构建多重异质图,然后提出基于关系路径的增强型邻近嵌入方法,解决邻近嵌入无法应用于多重异质图相似性度量的问题.此外,从MSDN网站的API文档中提取知识,构建API关系图,学习Windows API间的相似关系,有效减缓相似性度量模型老化速度.最后,通过对比实验验证所提方法RG-MHPE在相似性度量性能和模型抗老化能力等方面表现最好. 相似文献
12.
动态行为分析是一种常见的恶意程序分析方法,常用图来表示恶意程序系统调用或资源依赖等,通过图挖掘算法找出已知恶意程序样本中公共的恶意特征子图,并通过这些特征子图对恶意程序进行检测.然而这些方法往往依赖于图匹配算法,且图匹配不可避免计算慢,同时,算法中还忽视了子图之间的关系,而考虑子图间的关系有助于提高模型检测效果.为了解决这两个问题,提出了一种基于子图相似性恶意程序检测方法,即DMBSS.该方法使用数据流图来表示恶意程序运行时的系统行为或事件,再从数据流图中提取出恶意行为特征子图,并使用"逆拓扑标识"算法将特征子图表示成字符串,字符串蕴含了子图的结构信息,使用字符串替代图的匹配.然后,通过神经网络来计算子图间的相似性即将子图结构表示成高维向量,使得相似子图在向量空间的距离也较近.最后,使用子图向量构建恶意程序的相似性函数,并在此基础上,结合SVM分类器对恶意程序进行检测.实验结果显示,与其他方法相比,DMBSS在检测恶意程序时速度较快,且准确率较高. 相似文献
13.
14.
针对静态检测和动态检测方式存在的问题,提出了一种基于混合方式的恶意移动应用检测方法。该方法采用静态分析和动态分析相结合的方式,通过静态分析获取权限特征和函数调用特征,通过动态分析在沙盒环境下借助于事件仿真获取系统调用序列并提取函数调用依赖关系特征;在此基础上,提出了一种基于集成学习的分类器构造方法,区分恶意应用和正常应用。在来自于第三方应用市场中的3000个样本集上进行了实验验证,结果表明基于混合方式的恶意应用检测效果要优于基于静态分析的方式和基于动态分析的方式;考虑多种类型特征的样本上的检测精度要高于采用单一特征刻画的样本上的值;采用集成分类器具有较好的检测精度。 相似文献
15.
提出了一种基于操作码频率的恶意代码可视化分析方法.该方法在静态反汇编的基础上,获取机器指令中的操作码序列,使用设计的色谱来区分常见的和罕见的操作码指令,并依据对应颜色向量在RGB空间中的次序来重排操作码的位置,以此实现关于操作码频率的映射,解决了现有可视化方法视觉区分度不强、分类精准度不高的问题.将该方法应用于微软提供... 相似文献
16.
近些年来,层出不穷的恶意软件对系统安全构成了严重的威胁并造成巨大的经济损失,研究者提出了许多恶意软件检测方案。但恶意软件开发中常利用加壳和多态等混淆技术,这使得传统的静态检测方案如静态特征匹配不足以应对。而传统的应用层动态检测方法也存在易被恶意软件禁用或绕过的缺点。本文提出一种利用底层数据流关系进行恶意软件检测的方法,即在系统底层监视程序运行时的数据传递情况,生成数据流图,提取图的特征形成特征向量,使用特征向量衡量数据流图的相似性,评估程序行为的恶意倾向,以达到快速检测恶意软件的目的。该方法具有低复杂度与高检测效率的特点。实验结果表明本文提出的恶意软件检测方法可达到较高的检测精度以及较低的误报率,分别为98.50%及3.18%。 相似文献
17.
融合多特征的Android恶意软件检测方法 总被引:1,自引:0,他引:1
针对当前基于机器学习的Android恶意软件检测方法特征构建维度单一,难以全方位表征Android恶意软件行为特点的问题,文章提出一种融合软件行为特征、Android Manifest.xml文件结构特征和Android恶意软件分析经验特征的恶意软件检测方法。该方法提取Android应用的Dalvik操作码N-gram语义信息、系统敏感API、系统Intent、系统Category、敏感权限和相关经验特征,多方位表征Android恶意软件的行为并构建特征向量,采用基于XGBoost的集成学习算法构建分类模型,实现对恶意软件的准确分类。在公开数据集DREBIN和AMD上进行实验,实验结果表明,该方法能够达到高于97%的检测准确率,有效提升了Android恶意软件的检测效果。 相似文献
18.
智能手机的普及极大地刺激了恶意软件的广泛传播,Android平台因其巨大的市场占有率和开源特性,已成为攻击者首选的攻击目标。针对传统的基于签名的反病毒软件仅能检测已知恶意软件的缺点,文章提出基于沙盒的Android恶意软件动态分析方案,用于有效地分析未知恶意软件的行为。文章通过在虚拟化软件Oracle VM VirtualBox中安装Android x86虚拟机的方式来实现Android沙盒,利用VirtualBox提供的命令行工具来控制Android沙盒。Android应用程序通过调用相应系统API来完成对应的行为,文中方案通过在应用程序包中插入API监视代码的方法监测Android应用程序调用的系统API,并通过脚本程序向Android沙盒发送不同的用户事件流来模拟用户对应用程序的真实操作,控制Android应用程序在沙盒中自动运行,实验证明文中提出的方法切实可行。 相似文献
19.
随着互联网技术日益成熟,恶意程序呈现出爆发式增长趋势。面对无源码恶意性未知的可执行文件,当前主流恶意程序检测多采用基于相似性的特征检测,缺少对恶意性来源的分析。基于该现状,定义了程序基因概念,设计并实现了通用的程序基因提取方案,提出了基于程序基因的恶意程序预测方法,通过机器学习及深度学习技术,使预测系统具有良好的预测能力,其中深度学习模型准确率达到了99.3%,验证了程序基因理论在恶意程序分析领域的作用。 相似文献