共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
通过硅改性的方法制备了SnO2/SiO2复合氧化物,经酸化后得到强酸性SnO2/SiO2(Sn-Si)催化剂;通过NH3-TPD、FTIR、吡啶吸附FTIR、Raman光谱等对Sn-Si催化剂进行了表征,将催化剂用于无溶剂体系中山梨醇直接催化脱水制异山梨醇的反应,并对反应条件进行了优化;考察了SO42-/Sn-Si催化剂的重复使用性,并分析了催化机理。实验结果表明,在SO42-/Sn-Si催化剂用量10%(w)、150℃下反应1 h的条件下,山梨醇可完全转化,异山梨醇和1,4-失水山梨醇收率分别为73.25%和18.45%,且催化剂具有良好的重复使用性。B酸和L酸协同催化有助于抑制副反应,提高异山梨醇的收率。研究结果对异山梨醇非均相催化体系的开发及产业化应用有较好的借鉴意义。 相似文献
3.
4.
5.
6.
7.
在小型固定流化床反应装置上使用三种不同的催化裂化催化剂进行了乙醇催化脱水制乙烯反应性能的研究,并对其反应化学及反应机理进行了初探。实验结果表明,在反应温度为360℃、进料重时空速为1.25h-1的实验条件下,A,B,C三种催化剂均表现出较好的催化脱水制乙烯反应性能,乙醇催化脱水反应的转化率均大于99%,烃类产物中乙烯体积分数均大于98%,乙烯产率均大于60%;并且催化剂C具有较好的活性稳定性。乙醇在分子筛催化剂上催化脱水反应过程遵循正碳离子机理,较好地解释了主要产物乙烯、丙烯和丙烷的生成机理。 相似文献
8.
催化裂解反应动力学模型的建立及其应用 总被引:5,自引:0,他引:5
采用中型流化床催化裂解试验数据,分析催化裂解反应特征,建立了催化裂解反应的四集总动力模型,用参数估值方法确定模型中待定的反应动力学常数;考察不同原料油性质对反应速率的影响,确定反应动力学常数与原料油性质的关系。该模型应用结果表明,能够较好地预测不同原料在不同操作条件下的催化裂解的产品分布。 相似文献
9.
周建伟 《精细石油化工进展》2002,3(12):42-44
以异辛酸亚锡为催化剂,D,L-丙交酯开环聚合合成聚乳酸,研究了D,L-丙交酯聚合动力学,考察了催化剂和反应温度对聚合反应的影响,测定了聚合反应的表观活化能及聚合速率方程,并推测了反应机理。 相似文献
10.
11.
对陕北神木中温热解煤焦油在电场中的脱水动力学进行了研究,得到了煤焦油在电场中脱水的一般规律。通过在电场中加入破乳剂,以von Smoluchowski提出的快速聚集理论为基础,建立了动力学模型,考察了外加电场的电场强度、内部水滴直径、乳化液中水相含量、脱水温度及乳状液黏度对脱水速率的影响;用Matlab软件拟合出各动力学参数,得出模型参数C1=1.35×10-3,C2=6.02×10-5。用实测数据对模型的可靠性进行了验证,模型验证显示相对误差可控制在3%左右,表明此模型对煤焦油在电场中的脱水速率具有很好的预测性,为破乳剂评价和工业化应用提供了可靠依据,具有很好的实用价值。 相似文献
12.
氨基磺酸催化合成环己酮缩乙二醇及其动力学 总被引:7,自引:0,他引:7
以氨基磺酸为催化剂 ,环己烷为带水剂 ,以环己酮和乙二醇为原料直接合成环己酮缩乙二醇 ,并研究了其优化反应条件。该催化反应的速率方程 -dcA/dt =kAcAcB,反应活化能Ea=6 0 .6 5 6kJ/mol,反应速率常数kA=6 .44×10 6 exp (-72 5 9.6 /T) (L·mol- 1 ·min- 1 )。 相似文献
13.
对乳酸脱水制取丙烯酸的热力学进行了计算,并以NaY分子筛为催化剂对乳酸脱水反应参数进行了优化;采用K+,Ba2+,La3+对NaY分子筛进行改性,并用N2物理吸附,NH3-TPD,CO2-TPD等手段对催化剂进行了表征。实验结果表明,优化的工艺条件为乳酸质量分数38%、载气N2流量30 mL/min;金属离子改性的分子筛改变了分子筛表面酸碱位点分布进而影响了催化剂的乳酸脱水性能,其中,La/NaY分子筛具有适度的酸量及最高的碱量从而呈现出优异的催化性能,在325℃时丙烯酸收率达56.3%,而NaY分子筛上丙烯酸收率只有21.6%。适当降低酸强度及酸量可提高丙烯酸收率,并可削弱乙醛的形成;而提高碱量及适度减弱碱强度可有效提高丙烯酸收率。 相似文献
14.
石蜡催化氧化反应宏观动力学 总被引:3,自引:0,他引:3
采用玻璃鼓泡反应器,进行石蜡催化氧化反应的实验,考察了反应时间和温度对石蜡催化氧化反应的影响。将石蜡催化氧化反应过程分为氧化反应阶段和酯化反应阶段,在此基础上建立了石蜡催化氧化反应动力学模型。实验结果表明,利用皂化值为参数建立的动力学模型可较好地表征石蜡催化氧化反应动力学过程;由150,160,170℃下的实验数据回归得到氧化反应阶段的表观活化能为41.653kJ/mol,指数前因子为48022.7h-1;酯化反应阶段的表观活化能为12.970kJ/mol,指数前因子为5.401h-1。 相似文献
15.
16.
采用Constantinou-Gani基团贡献法和Rozicka-Domalski基团贡献法计算了对苯二甲酸(TA)加氢制备1,4-环己烷二甲酸(CHDA)过程中可能涉及的主副产物的标准摩尔生成焓、标准摩尔蒸发焓和定压热容。在373.15~573.15 K的温度下,分别计算了TA加氢反应体系中各反应的焓变、Gibbs自由能变和平衡常数。计算结果表明,在373.15~573.15 K温度范围内,TA加氢反应以苯环加氢反应和脱羧基反应为主。TA加氢生成CHDA的反应是放热反应,低温有利于该反应的进行,而TA脱羧基生成苯甲酸的反应是吸热反应,高温有利于该反应的进行。但因低温不利于TA的溶解,综合考虑,选择TA加氢制备CHDA的反应温度为493.15~523.15 K较适宜。 相似文献
17.
以硫酸、磷钨酸、ZRP-5分子筛为催化剂,研究了二甘醇(DEG)脱水环化的反应规律。结果表明,DEG发生分子内脱水环化反应,生成1,4-二氧六环(DOX),DEG分子间脱水不仅可以生成四甘醇、六甘醇等,同时可生成三甘醇、五甘醇等一系列的多甘醇(PEG)。不仅DEG可以脱水环化生成DOX,在反应中生成的PEG也同样可以进行生成DOX的反应。对于二甘醇(DEG)脱水环化反应,硫酸是性能优良的催化剂,反应可以在较低的温度下进行,馏出产物中DOX选择性大于95%。 相似文献
18.
祝阳 《石油与天然气化工》2009,38(6):487-489
以低浓度的乙醇水溶液为原料,4A分子筛为催化剂催化乙醇脱水制备乙烯。考察了乙醇浓度、反应温度、催化剂的活化条件以及颗粒大小等对反应的影响,结果表明催化剂对低浓度、的乙醇溶液具有较高的选择性。分析了催化剂对低浓度乙醇脱水生成乙烯选择性较高的原因。 相似文献
19.
《石油化工》2015,44(6):705
采用振荡式浆态床反应器研究了Ni Mo催化剂作用下的菲催化加氢行为及其动力学,考察了反应温度和氢初压对菲催化加氢反应的影响。实验结果表明,提高反应温度和氢初压均有利于菲催化加氢反应,在反应温度380℃、氢初压9 MPa、反应时间30 min的条件下,菲催化加氢转化率可达80.34%。菲催化加氢反应符合Langmuir-Hinshelwood机理,菲和H2均为分子状态吸附,催化加氢反应过程中的表面反应为控制步骤,由此推导的反应动力学方程与实验数据十分吻合,并同时用统计检验法验证了机理假设的合理性。由实验数据求得菲在浆态床内催化加氢的活化能为25.99 k J/mol。 相似文献
20.
A pentane-insoluble mixture of asphaltenes was processed by thermal hydrocracking and catalytic hydrocracking over Ni-Mo/γ-Al2O3 catalyst in a microbatch reactor at 430 ℃.The experimental data of asphaltene conversion adequately fit second-order kinetics to give the apparent rate constants of 2.435×10-2 and 9.360×10-2 (wt frac)-1 min-1 for the two processes,respectively.A three-lump kinetic model is proposed to evaluate the rate constants for parallel reactions of asphaltenes producing liquid oil (k1) and gas+coke (k3),and consecutive reaction producing gas+coke (k2) from this liquid oil.The evaluated constants for asphaltenes hydrocracking,in the presence and absence of the catalyst,respectively,show that k1 is 2.430×10-2 and 9.355×10-2 (wt frac)-1 min-1,k2 is 2.426×10-2 and 6.347×10-3 min-1,and k3 is 5.416×10-5 and 4.803×10-5 (wt frac)-1 min-1.As compared with the thermal hydrocracking of asphaltenes,the catalytic hydrocracking of asphaltenes promotes liquid production and inhibits coke formation effectively. 相似文献