首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Microstructure and electrical properties of manganese oxide (MnO)-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 (NBBT) piezoceramics were investigated in this work. X-ray diffraction analysis shows that the suitable substitution of Mn ion into the B site induces the lattice distortion of perovskite NBBT: the solution limit is at 0.3 wt% MnO. Besides, it is observed that the sintering properties can be improved by adding a small amount of MnO, thus increasing the grain size and the relative density. Further, the temperature dependence of the dielectric permittivity of NBBT ceramics indicates that the MnO addition reconstructs the disorder array destroyed by joining BaTiO3 in the Na0.5Bi0.5TiO3 system due to the sizable radius of the B-site cations. Combining these effects of MnO addition, the optimal electrical properties were acquired for NBBT ceramic with addition of 0.30 wt% MnO. The excellent electrical properties of MnO-doped NBBT ceramics indicate its promising application in large displacement actuators.  相似文献   

2.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

3.
The deformation and fracture mechanisms in tension were studied in single-crystal Er2O3-doped ZrO2 monofilaments processed by the laser-heated floating zone method. Tensile tests were carried out between 25° and 1400°C at different loading rates and the dominant deformation and fracture mechanisms were determined from the shape of the stress–strain curves, the morphology of the fracture surfaces, and the evidence provided by monofilaments deformed at high temperature and broken at ambient temperature. The tensile strength presented a minimum at 600°–800°C and it was controlled by the slow growth of a crack from the surface. This mechanism was also dominant in some monofilaments tested at 1000°C and above, while others showed extensive plastic deformation before fracture at these temperatures. The strength of plastically deformed monofilaments was significantly higher than those which failed by slow crack growth due to the marked strain hardening capacity of this material.  相似文献   

4.
Using a tracer sectioning technique, the self-diffusion of Er in pure and HfO2-doped polycrystalline Er2O3 was measured at 1614° to 1900°C. Up to ≊ 10 mol% HfO2 dopant level, the Er self-diffusion coefficients followed a relation based on cation vacancies as the principal mobile defects present and available for cation diffusion. Above 10 mol% HfO2, deviation from this relation occurred, apparently due to clustering of cation vacancies and oxygen interstitials around the dopant hafnium ions. The activation energy for the self-diffusion of Er in pure Er2O3 was 82.2 kcal/mol and increased with the HfO2 dopant level present.  相似文献   

5.
Tetragonal zirconia doped with 3 mol% Er2O3 was prepared by the gel-precipitation wet-chemical method. The compaction response of ultrafine (∼8.5 nm), calcined, deagglomerated powders was studied. Initial sintering was studied using both isothermal and nonisothermal techniques, and an activation energy of 270 ± 40 kJ/mol was obtained; therefore, grain-boundary diffusion was probably the predominant mechanism in the sintering stage. The microstructural development in the high-temperature-aged, sintered samples and its effect on density and mechanical properties were also studied. A theoretically dense body of tetragonal zirconia solid solution of 3 mol% Er2O3–ZrO2, obtained from sintering below 1400°C, was translucent.  相似文献   

6.
Plate-like Na0.5Bi0.5TiO3 (NBT) particles with perovskite structure were synthesized by topochemical microcrystal conversion from plate-like particles of layer-structured Na0.5Bi4.5Ti4O15 (NBIT) at 950°C in NaCl molten salt. As the precursors of NBT, plate-like NBIT particles were first synthesized by molten salt process by the reaction of Bi4Ti3O12, Na2CO3, and TiO2. After the topochemical reactions, layer-structured NBIT particles were transformed to the perovskite NBT platelets. NBT particles with a thickness of approximately 0.5 μm and a length of 10–15 μm retained the morphology feature of the precursor. High-aspect-ratio NBT platelets are suitable templates to obtain textured ceramics (especially NBT-based ceramics) by (reactive) template grain growth process.  相似文献   

7.
Upconversion emission properties of Na1/2Bi1/2TiO3:Er3+ ceramics prepared by the solid-state reaction method were analyzed as a function of Er3+ concentration and incident pump power. Strong green (550 nm) and red (670 nm) emission bands were observed with 980 nm excitation at room temperature. Experimental results showed that the emission bands can be tuned by changing Er3+ concentration. Upconversion processes in these samples result from not only a two-photon excited-state absorption process but also a nonradiative energy transfer and cross-relaxation process.  相似文献   

8.
Large plate-like Na0.5Bi0.5TiO3 (NBT) templates have been successfully synthesized from bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 (NBIT) particles by the topochemical method. Because of the highly anisotropic structure, plate-like NBIT particles were first synthesized by the molten-salt process. After the topochemical reaction with the complementary reactants (Na2CO3, and TiO2) in NaCl flux, the layer-structured NBIT particles were transformed to the perovskite NBT templates. The resulting NBT templates are large and of plate-like shape. Our results also reveal that they are more effective in inducing grain orientation in the BNKT-BT ceramics as compared with BIT templates. For a BNKT-BT ceramic textured with 20 wt% of NBT templates, it exhibits a very high degree of grain orientation and gives a large Lotgering factor of 0.89.  相似文献   

9.
10.
11.
A tracer sectioning technique was used to measure cation self-diffusion coefficients in fully dense polycrystalline YaO3 and Er2Os under oxidizing conditions. The results are described by the relations for Y2O3 (1400° to 1670°C), and for Er2O3 (1400° to 1700°C). The greater activation energy for erbium diffusion in erbia may be partly attributable to a mass effect.  相似文献   

12.
PbTiO3-doped sodium bismuth titanate (Na1/2Bi1/2)1− x Pb x TiO3 of perovskite structure is one of the best-known piezoelectrics/ferroelectrics. However, it has not been properly investigated in any thin-film forms. In this study, the dielectric properties of (Na1/2Bi1/2)0.87Pb0.13TiO3 thin films synthesized via a sol–gel route were investigated. They exhibit a strong frequency dispersion of the dielectric permittivity at relatively high frequencies, which is shifted to lower frequencies with increasing temperature. The electrical behavior can be fitted using Jonscher's universal law for dielectric relaxation. The peculiar dielectric behaviors observed can be ascribed to the coexistence of two different dielectric phases in the films, which is believed to be associated with the growth of the local Pb2+TiO3 nanoclusters upon substitution of Pb2+ for Na+/Bi3+ in the (Na1/2Bi1/2)1− x Pb x TiO3 films.  相似文献   

13.
Chemically homogeneous SrTiO3 powders of submicrometer size were obtained by alcohol dehydration and subsequent calcination of citrate/format solutions. Nb2O5-doped SrTiO3 was prepared with various Sr:Ti ratios resulting in an anomalous increase in the dielectric constant ( K 'up to ∼8000) for donor-doped SrO-excess SrTiO3. No semiconducting behavior was observed for donor-doped TiO2-excess SrTiO3 when fired in air. Therefore, a "brick-wall" type of microstructure was formed as a result of the excess SrO, giving rise to anomalously high dielectric constants.  相似文献   

14.
The sintering and electrical characteristics of La-modified Na1/2Bi1/2TiO3 (NBT) was investigated from a defect structure viewpoint. To reveal the role of cation vacancies, two series of ceramics, with different cation vacancies, were processed to compensate the excess positive charge of lanthanum ions. In a region of complete solid solution, the grain size of NBLT-B {[(Na0.5Bi0.5)1− x La x ]Ti1−0.25 x O3} was smaller than that of NBLT-A {[(Na0.5Bi0.5)1−1.5 x La x ]TiO3} and densification was enhanced more effectively in NBLT-B. With the aid of thermoelectric power, electric conductivity, and electrotransport measurements, it was found that different sintering behaviors between NBLT-A and NBLT-B specimens were related to the change in the type of cation vacancies present and that lanthanum ion–cation vacancy pairs played an important role in reducing the grain growth and enhancing the densification process.  相似文献   

15.
Polycrystalline BaTiO3 prepared from alkoxy-derived high-purity submicron powders was studied. Highly dense bodies with uniform grain size were obtained typically by uniaxial cold-pressing at 3000 psi and isostatic pressing at 30,000 psi followed by sintering at 1300° to 1350°C in air for 0.5 to 1 h. Using the same consolidation parameters and intimate mixing of residual concentrations of highly active fine-particulate rare-earth oxides to act as grain-growth inhibitors, nearly theoretically dense bodies with a uniform microstructure and 1 to 1.5 μm grain size were obtained. Typical microstructures with well-defined 90° and 180° domain patterns characteristic of BaTiO3: were observed. Also, an example of a checkerboard pattern resulting from a 〈111〉 ingrown twin plane in the structure which is independent of the Curie temperature was found. Electrical measurements on the undoped material indicated room-temperature dielectric constant and tan δ values of 5000±500 and 4×10−3, respectively. Very high k values and dissipation factors were observed with the La2O3- and Nd2O3-doped samples.  相似文献   

16.
17.
Lead-free Na0.5K0.5NbO3 (NKN) piezoelectric ceramics were fairly well densified at a relatively low temperature under atmospheric conditions. A relative density of 96%–99% can be achieved by either using high-energy attrition milling or adding 1 mol% oxide additives. It is suggested that ultra-fine starting powders by active milling or oxygen vacancies and even liquid phases from B-site oxide additives mainly lead to improved sintering. Not only were dielectric properties influenced by oxide additives, such as the Curie temperature ( T c) and dielectric loss ( D ), but also the ferroelectricity was modified. A relatively large remanent polarization was produced, ranging from 16 μC/cm2 for pure NKN to 23 μC/cm2 for ZnO-added NKN samples. The following dielectric and piezoelectric properties were obtained: relative permittivity ɛ T 33 0 =570–650, planar mode electromechanical coupling factor, k p=32%–44%, and piezoelectric strain constant, d 33=92–117 pC/N.  相似文献   

18.
Up to 3.3 wt% nitrogen can be incorporated into Na2O-B2O3 glass melts. The melting procedure is described, and structure models are given. In contrast to N-containing silicate glasses, the borate glasses were transparent; however, micrographs of their fracture surfaces showed some crystallinity. Properties were determined as a function of the N and Na2O contents of the glasses. Compared with N-containing silicate glasses, the properties of borate glasses are much less changed by the nitrogen introduced.  相似文献   

19.
Lead-free perovskite Ba(Al1/2Nb1/2)O3 was prepared by conventional ceramic fabrication technique at 1350°C/5 h in air atmosphere. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software whereas crystallite size and lattice strain were estimated from Williamson-Hall approach. X-ray diffraction analysis of the compound indicated the formation of a single-phase monoclinic structure with the space group P 2/ m . EDAX and SEM studies were carried out in order to evaluate the quality and purity of the compound. Permittivity data showed low-temperature coefficient of capacitance ( T CC=14%) up to 100°C. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using the impedance data. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. The correlated barrier-hopping model was used to successfully explain the mechanism of charge transport in Ba(Al1/2Nb1/2)O3.  相似文献   

20.
The nonlinear volt-ampere characteristics and small-signal ac capacitance and resistance of sintered ZnO containing 0.5 mol% Bi2O3 were measured. Many of the electrical properties are related directly to the microstructure, which consists of conductive ZnO grains separated by a continuous amorphous Bl2O3, phase. The origin of the nonlinear conduction in the intergranular phase was confirmed by experiments with evaporated thin films. The proposed conduction mechanism in varistors containing ZnO and Bi2O3 is a combination of hopping and tunneling in the amorphous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号