首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Presence of Bacillus cereus in street foods in Gaborone, Botswana   总被引:1,自引:0,他引:1  
The purpose of this study was to evaluate the microbiological safety and quality of street foods sold in Gaborone, Botswana. A total of 148 point-of-sale composite street food samples were bought and analyzed between June 2001 and May 2002. The analysis focused on the level of contamination of various street foods with Bacillus cereus. The B. cereus (vegetative and spores), total spore, and total viable counts were determined on all the samples. Also B. cereus isolates from 444 individual point-of-sale food samples were characterized with respect to their biochemical profiles and enterotoxigenic properties. The B. cereus contamination rate for point-of-sale foods was 65%. The B. cereus counts ranged from not detectable to levels as high as 9.1 log CFU/g. Despite the high rate of contamination of some samples, generally, most samples had B. cereus counts of less than 4 log CFU/g; hence, they were of acceptable microbiological quality. Bacillus diarrheal enterotoxin was detected from 52 isolates from individual portions of meals using the B. cereus enterotoxin reversed passive latex agglutination kit. Results of the assay revealed that 59.6% of the B. cereus isolates were enterotoxigenic. Most of the enterotoxigenic isolates were obtained from vegetable samples.  相似文献   

2.
Potato products prepared from dehydrated potato flakes have been implicated in foodborne illness incidents involving Bacillus cereus intoxications. B. cereus can survive as spores in potato flakes and can germinate and multiply in the rehydrated product. This study assessed the frequency and concentration of B. cereus in dehydrated potato flakes and hot-held, ready-to-eat mashed potato products. Of 50 packets of potato flakes tested, eight contained greater than 100 CFU/g B. cereus (maximum 370 CFU/g). The temperature of the potato portion of 44 hot-held food products was measured immediately after purchase, and 86% were below the safe hot-holding temperature of 60 degrees C. The potato portions were subsequently tested for B. cereus. Only two of the potato portions contained B. cereus at greater than 100 CFU/g, a potato-topped pastry (1000 CFU/g) and a container of potato and gravy (120 CFU/g). To assess multiplication of B. cereus in this food, we held rehydrated potato flakes with naturally occurring B. cereus at 37, 42, and 50 degrees C and tested them over 6 h. By 6 h, the number of B. cereus in potato stored at 37 degrees C had exceeded 10(3) CFU/g, was greater than 10(4) CFU/g at 50 degrees C, and was close to 10(6) CFU/g at 42 degrees C. Growth data were compared to predictions from the U.S. Department of Agriculture Pathogen Modeling Program (PMP 7.0). The PMP predictions were found to simulate the measured growth better at 42 degrees C than at 37 degrees C. Hot-held potato products should be safe for consumption if held at 60 degrees C or above or discarded within 2 h.  相似文献   

3.
The prevalence of Bacillus cereus, in a total of 381 samples of dried milk products (milk with rice, milk substitute, milk powder, milk-cereal-rice, pudding milk, flan, and mousse) used by the Chilean School Feeding Program, was investigated. The potential of 94 selected isolates of B. cereus to produce diarrhoeal enterotoxin (by the BCET-RPLA test) in BHI culture, as well as the ability of enterotoxigenic-strains to grow at psychrotrophic temperatures were also verified. B. cereus was found in 175 of 381 of the samples analysed (45.9%), reaching levels from 3.0 to 10(4) spores g(-1). As expected, the higher prevalence and counts were observed in those products that contained whole rice, cereals and pulses extruded, and food additives. Of the 94 isolates of B. cereus tested for diarrhoeal enterotoxin production, 28 (29.8%) were positive, and none of these was able to grow at < or = 7 degrees C. The prevalence of B. cereus in dried milk products analysed was fairly high, although it was present in low number. However, as they were composed to a large extent of enterotoxigenic mesophilic strains, the potential risk for the safety of reconstituted products held at improper temperature should not be neglected.  相似文献   

4.
A study was done to determine the influence of temperature on growth and toxin production characteristics of psychrotrophic and mesophilic strains of Bacillus cereus when inoculated into mashed potatoes and chicken gravy containing various concentrations of sodium chloride and held at temperatures different from those at which cells had been cultured. Logarithmic growth phase cells (10 h, 30 degrees C) of psychrotrophic (F3802A/84) and mesophilic (B4ac-1) strains of Bacillus cereus were inoculated into rehydrated commercially processed instant mashed potatoes and chicken gravy supplemented with 0, 2, or 4% sodium chloride. Growth, survival, and diarrheal toxin production in potatoes and gravy held at 30, 37, and 10 degrees C (strain F3802A/84) or 30, 40, and 10 degrees C (strain B4ac-1) were monitored. Both strains grew in both foods containing no added sodium chloride or 2% sodium chloride when held at 30, 37, or 40 degrees C for 2 days. Strain B4ac-1 grew better than strain F3802A/84 in foods containing 4% sodium chloride. Maximum amounts of enterotoxin (1024 ng/g) were produced by strain B4ac-1 in chicken gravy held at 30 and 40 degrees C. Strain F3802A/84 grew to populations of 7 log10 CFU/g in foods containing no added sodium chloride or 2% sodium chloride at 10 degrees C. Strain F3802A/84 produced the highest amount of enterotoxin (1024 ng/g) at 30 degrees C in chicken gravy containing 0.7 or 2% sodium chloride; however, little or low amounts of toxin (4-16 ng/g) were produced in chicken gravy at 10 degrees C. Compared to strain B4ac-1, cells of strain F3802A/84 subjected to a downward shift in incubation temperature (10 degrees C) grew more rapidly in chicken gravy. Strain B4ac-1 produced the highest amount of toxin (1024 ng/g) at 30 degrees C in gravy containing 4% sodium chloride and at 40 degrees C in gravy containing 0.7% sodium chloride. Toxin was not detected in inoculated mashed potatoes. Results of this study indicate that shifts in incubation temperature influence growth and toxin production by psychrotrophic and mesophilic strains of B. cereux differently. It is important to store pasteurized, ready-to-eat foods at a temperature low enough to prevent the growth of B. cereus.  相似文献   

5.
The effect of heating rate on the heat resistance, germination, and outgrowth of Clostridium perfringens spores during cooking of cured ground pork was investigated. Inoculated cured ground pork portions were heated from 20 to 75°C at a rate of 4, 8, or 12°C/h and then held at 75°C for 48 h. No significant differences (P > 0.05) in the heat resistance of C. perfringens spores were observed in cured ground pork heated at 4, 8, or 12°C/h. At heating rates of 8 and 12°C/h, no significant differences in the germination and outgrowth of spores were observed (P > 0.05). However, when pork was heated at 4°C/h, growth of C. perfringens occurred when the temperature of the product was between 44 and 56°C. In another set of experiments, the behavior of C. perfringens spores under temperature abuse conditions was studied in cured and noncured ground pork heated at 4°C/h and then cooled from 54.4 to 7.2°C within 20 h. Temperature abuse during cooling of noncured ground pork resulted in a 2.8-log CFU/g increase in C. perfringens. In cured ground pork, C. perfringens decreased by 1.1 log CFU/g during cooling from 54.4 to 36.3°C and then increased by 0.9 log CFU/g until the product reached 7.2°C. Even when the initial level of C. perfringens spores in cured ground pork was 5 log CFU/g, the final counts after abusive cooling did not exceed 3.4 log CFU/g. These results suggest that there is no risk associated with C. perfringens in cured pork products under the tested conditions.  相似文献   

6.
Fresh cooked rice cakes for retail sale are typically held at room temperature because refrigeration dramatically reduces their quality. Room temperature, high water activity, and a pH of > 4.6 provided an environment conducive to pathogen growth. To date, no studies have been published regarding survival and growth of foodborne pathogens in fresh cooked rice cakes. This study was undertaken to investigate the effect of steam cooking on foodborne pathogens and their subsequent growth in five varieties of rice cakes made from flours of regular rice, sweet rice, white rice, tapioca, and mung bean. Bacillus cereus spores were detected in white rice, tapioca, and mung bean samples. The rice cake flours were inoculated with non-spore-forming foodborne pathogens (Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) or spore-forming bacteria (Bacillus cereus) and steam cooked (100 degrees C) for 30 min. Steam cooking significantly reduced (> 6 log CFU/g) non-spore-forming foodborne pathogens in all samples and inactivated spores of B. cereus by 1 to 2 log CFU/g. Although spores of B. cereus survived steam cooking and germinated during 3 days of storage at room temperature, populations in most rice cakes remained below 106 CFU/g, which is the threshold for producing toxin. Rice cakes made from mung bean flour supported growth and germination of B. cereus spores above that critical level. In mung bean rice cakes, enterotoxin production was detected by the second day, when B cereus cell populations reached about 6.9 log CFU/g. The toxin concentration increased with storage time. However, our results suggest that rapid growth of total mesophilic microorganisms by more than 7 to 8 log CFU/ml during the first day of storage produced off flavors and spoilage before B. cereus was able to grow enough to produce toxins. Therefore, steam-cooked rice cakes made from a variety of flours including mung bean flour are safe for sale for up to 1 day after storage at room temperature and are free of B. cereus toxins.  相似文献   

7.
Raw soybean sprouts, which are used as ingredients in cook-chilled products, were analyzed to evaluate the incidence of mesophilic aerobic microorganisms, psychrotrophic microorganisms, anaerobic microorganisms, coliforms, and spore-forming microorganisms Bacillus cereus, Clostridium botulinum, and Clostridium perfringens. Mesophilic microorganisms on raw soybean sprouts were present in large populations, 5.5 x 10(6) to 1.4 x 10(8) CFU/g, and psychrotrophic microorganisms were found to be more numerous than the other groups. Coliforms accounted for 15% of mesophilic microorganism counts on average, and the average for spore-forming microorganisms was 5.2 x 10(2) CFU/g. B. cereus was isolated from 12 of 17 soybean sprout samples, whereas C. botulinum and C. perfringens were not isolated. B. cereus was isolated in greater numbers at 30 degrees C compared with other temperatures and was not isolated at 4 degrees C. Of the 55 strains isolated from soybean sprouts, 52 were positive for starch hydrolysis, and only 3 strains did not hydrolyze starch. Among the 55 strains of B. cereus isolates, 53 showed the ability to produce diarrheal enterotoxin by CRET-RPLA.  相似文献   

8.
A multiplex polymerase chain reaction (PCR) assay was developed for the detection and differentiation of enterotoxigenic Staphylococcus aureus in dairy products. A solvent extraction procedure was successfully modified for extraction of S. aureus DNA from 10 ml of artificially contaminated skim milk or 20 g cheddar cheese. Primers targeting the enterotoxin C gene (entC) and thermostable nuclease gene (nuc) were used in the multiplex PCR. PCR products were confirmed using restriction fragment length polymorphism analysis. DNA was consistently quantified and amplified by uniplex PCR from 10 CFU/ml of S. aureus in skim milk or 10 CFU/20 g cheddar cheese. The sensitivity of the multiplex PCR was 100 CFU/ml of skim milk or 100 CFU/20 g cheddar cheese. The developed methodology allows presumptive identification and differentiation of enterotoxigenic S. aureus in less than 6 h.  相似文献   

9.
Two outbreak-related Bacillus cereus emetic strains were investigated for their growth and cereulide production potential in penne pasta at 4, 8 and 25 °C during 7-day storage. Cereulide production was detected and quantified by LC-MS method (LOD of 1 ng/ml, LOQ of 5 ng/ml) and growth was determined by culture-based enumeration. Inoculated B. cereus strains (10(5) CFU/g) were able to reach counts of more than 10(8) CFU/g and cereulide production of about 500 ng/g already after 3 days of storage at 25 °C. Interestingly, a constant increase of the toxin was noticed during incubation at ambient temperature storage: the cereulide was continuously produced during the bacterial stationary growth phase reaching maximal amounts at the end of the experiment (7 days, concentration of about 1000 ng/g). Strictly respected cold chain temperature as 4 °C did not allow any detectable cereulide production for any of the two tested strains. At the limited temperature abuse of 8 °C, a detectable amount of cereulide was observed after two days for one of the strain (TIAC303) (相似文献   

10.
For the period 1990 through 2003, seafood was the most commonly identified food linked to foodborne outbreaks in the United States. Fish as a commodity has rarely been examined for the presence of Bacillus cereus in particular. For the present study, 347 fresh and processed retail seafood samples were examined for the presence of Clostridium botulinum, Clostridium perfringens, and B. cereus. The presence of C. botulinum was not confirmed in any of the isolates, but C. perfringens was confirmed in 17 samples. One of the C. perfringens isolates possessed the enterotoxin gene, as determined by PCR. In contrast, 62 confirmed B. cereus isolates were obtained from separate samples at levels ranging from 3.6 to > 1,100 CFU/g. Thirty (48%) of 62 isolates produced both the hemolysin BL (HBL) and nonhemolytic (NHE) enterotoxins, and 58 (94%) and 31 (50%) produced NHE or HBL toxins, respectively. The presence of at least one of the three genes of the NHE complex was detected in 99% of the isolates; 69% of the isolates possessed all three genes. In contrast, 71% of the isolates possessed at least one of the three genes of the HBL complex, and 37% possessed all three HBL gene components. Fifty of the 62 B. cereus isolates were from imported seafood, and 19 (38%) of these samples were at levels > 100 CFU/g. Twelve of the 14 highest enterotoxin assay results were from isolates from imported food. Only one B. cereus isolate possessed the cereulide synthetase gene, ces; this isolate also possessed the genes for the three-component HBL and NHE complexes. A majority of enterotoxin-producing isolates were resistant to 2 of 10 antibiotics tested, ceftriaxone and clindamycin. Our results demonstrate the potential of seafood as a vehicle for foodborne illness caused by B. cereus, in particular the enterotoxin-producing genotype.  相似文献   

11.
Hemolysin BL (HBL) is a major virulence factor for Bacillus cereus group strains. It is also a target enterotoxin for the most commonly used B. cereus detection kit, i.e., the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (BCET-RPLA) test kit. A survey of the HBL activities and the cytotoxicities to the Chinese hamster ovary (CHO) cells for the B. cereus group strains, however, showed that although only part of the B. cereus group strains are HBL active, all strains show cytotoxicity to the CHO cells. Thus, methods that allow the detection of not only the HBL but also of the B. cereus group strains are important. In this study, by comparison of the gene sequences of the 16S rRNA for B. cereus group and other bacteria strains, we designed primers B16S1 and B16S2 specific to all the B. cereus group strains. In addition, because HBL is a major enterotoxin, we also designed HBL gene-specific polymerase chain reaction (PCR) primers, i.e., Hm1 and Hm2, that generated the same results as those of the hemolysis and BCET-RPLA assays. Primers B16S1/B16S2 and Hm1/Hm2 could be combined into a multiplex PCR system for the simultaneous detection of B. cereus group cells and the possible presence of their HBL enterotoxins. Also, all these PCR systems allowed the detection of n x 10(0) CFU B. cereus cells per g of food sample if an 8-h enrichment step was performed prior to the PCR.  相似文献   

12.
Incidence and population levels of Bacillus cereus in American salad, an industrially manufactured, packaged and refrigerated deli salad containing vegetables and mustard, were determined. Of 12 ready-to-eat samples examined, one (8.3%) was positive for B. cereus at less than 5 x 10(3)cfu g(-1). According to the ISO confirmation procedure, a strain was isolated and further characterized and identified as B. cereus EPSO-35AS by API 50CH/20E phenotypic system, combined with additional tests of motility, oxidase activity and anaerobic growth. This strain produced diarrhoeal enterotoxin in tryptic soy broth culture as detected by BCET-RPLA test, hydrolysed starch and had a low D(90)-value (2.1 min), with an estimated z-value of 6.79 degrees C. After a lengthy lag phase (9-12 days of incubation), the strain was able to grow at 8 degrees C in both nutrient broth and tyndallized carrot broth with specific growth rates from 0.009 to 0.037 h(-1), respectively. In the vegetable substrate, lag time was approximately 3 days (66 h) shorter than in laboratory medium. The effect of temperature abuses on the safety of the product during the time of use or consumption is discussed.  相似文献   

13.
The survival of Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes was determined on almonds and pistachios held at typical storage temperatures. Almond kernels and inshell pistachios were inoculated with four- to six-strain cocktails of nalidixic acid-resistant Salmonella, E. coli O157:H7, or L. monocytogenes at 6 log CFU/g and then dried for 72 h. After drying, inoculated nuts were stored at -19, 4, or 24°C for up to 12 months. During the initial drying period after inoculation, levels of all pathogens declined by 1 to -log CFU/g on both almonds and pistachios. During storage, moisture content (4.8%) and water activity (0.4) of the almonds and pistachios were consistent at -19°C; increased slowly to 6% and 0.6, respectively, at 4°C; and fluctuated from 4 to 5% and 0.3 to 0.5 at 24°C, respectively. Every 1 or 2 months, levels of each pathogen were enumerated by plating; samples were enriched when levels fell below the limit of detection. No reduction in population level was observed at -19 or 4°C for either pathogen, with the exception of E. coli O157:H7-inoculated almonds stored at 4°C (decline of 0.09 log CFU/g/month). At 24°C, initial rates of decline were 0.20, 0.60, and 0.71 log CFU/g/month on almonds and 0.15, 0.35, and 0.86 log CFU/g/month on pistachios for Salmonella, E. coli O157:H7, and L. monocytogenes, respectively, but distinct tailing of the survival curves was noted for both E. coli O157:H7 and L. monocytogenes.  相似文献   

14.
This study investigated the survival of Staphylococcus aureus in precooked tuna meat for producing canned products during frozen storage (?20 ± 2 °C) as well as its growth and enterotoxin production at 35 to 37 °C after the storage. Samples (50 ± 5 g) of precooked albacore (loin, chunk, and flake) and skipjack (chunk and flake) tuna were inoculated with 5 enterotoxin‐producing strains of S. aureus at a level of approximately 3.5 log CFU/g and individually packed in a vacuum bag after 3 h incubation at 35 to 37 °C. Vacuum‐packed samples were stored in a freezer (?20 ± 2 °C) for 4 wk. The frozen samples were then thawed in 37 °C circulating water for 2 h and incubated at 35 to 37 °C for 22 h. Populations of S. aureus in all precooked tuna samples decreased slightly (<0.7 log CFU/g) after 4 wk of storage at ?20 ± 2 °C, but increased rapidly once the samples were thawed and held at 35 to 37 °C. Total S. aureus counts in albacore and skipjack samples increased by greater than 3 log CFU/g after 6 and 8 h of exposure to 35 to 37 °C, respectively. All samples became spoiled after 10 h of exposure to 35 to 37 °C, while no enterotoxin was detected in any samples. However, enterotoxins were detected in albacore loin and other samples after 12 and 24 h of incubation at 35 to 37 °C, respectively. Frozen precooked tuna meat should be used for producing canned tuna within 6 to 8 h of thawing to avoid product spoilage and potential enterotoxin production by S. aureus in contaminated precooked tuna meat.  相似文献   

15.
This paper reports on the prevalence and behaviour of Bacillus cereus in gnocchi, a REPFED of Italian origin. A survey of gnocchi under varying storage conditions, revealed that, although B. cereus was found in 33% of the samples, the contamination level was lower than 10(2) CFU/g for the unstored and the refrigerated (8 degrees C) samples. Counts increased with increasing storage temperatures and prolonged storage times in samples prepared without sorbic acid. The effect of different formulations (sorbic, citric and lactic acid) and storage conditions (8, 12 and 20 degrees C) have been evaluated in a challenge testing with spores of B. cereus. Results indicate that the use of sorbic acid in association with citric or lactic acid to pH 5.0 is effective in inhibiting growth of B. cereus and the anticipated shelf life of the product is safe even if temperature abuse occurs. If sorbic acid is omitted, lactic acid can inhibit B. cereus growth during storage at 8 degrees C. On the contrary, when temperature abuse occurs (12 and 20 degrees C), lactic or citric acid are not able to prevent growth of B. cereus.  相似文献   

16.
ABSTRACT:  Smoked salmon contaminated with Listeria monocytogenes has been implicated in foodborne listeriosis. The objectives of this study were to model the growth characteristics and examine the growth relationship of L. monocytogenes and native microflora in smoked salmon. Smoked salmon samples with a native microflora count of 2.9 log10 CFU/g were inoculated with a 6-strain mixture of L. monocytogenes to levels of log10 1.6 and log10 2.8 CFU/g, and stored at 4, 8, 12, and 16 °C. Growth characteristics (lag phase duration [LPD, h], growth rate [GR, log10 CFU/h], and maximum population density [MPD, log10 CFU/g]) of L. monocytogenes and native microflora were determined. At 4 to 16 °C, the LPD, GR, and MPD were 254 to 35 h, 0.0109 to 0.0538 log10 CFU/h, and 4.9 to 6.9 log10 CFU/g for L. monocytogenes , respectively, and were 257 to 29 h, 0.0102 to 0.0565 log10 CFU/h, and 8.5 to 8.8 log10 CFU/g for native microflora. The growth characteristics of L. monocytogenes or the native microflora were not significantly different ( P > 0.05), regardless the initial levels of L. monocytogenes . Mathematical equations were developed to describe the LPD, GR, and MPD of L. monocytogenes and native microflora as a function of storage temperature. The growth relationship between L. monocytogenes and native microflora was modeled and showed that the LPD and GR of L. monocytogenes were similar to those of native microflora. These models can be used to estimate the growth characteristics of L. monocytogenes in smoked salmon, and thereby enhance the microbiological safety of the product.  相似文献   

17.
A food processing plant producing pasteurized purées and its zucchini purée processing line were examined for contamination with aerobic and facultative anaerobic bacterial spores during a day's operation. Multiplication of spores was also monitored in the product stored under different conditions. High concentrations of Bacillus cereus spores were found in the soil in which the zucchinis were grown (4.6+/-0.3 log CFU/g), with a background spore population of 6.1+/-0.2 log CFU/g. In the processing plant, no B. cereus or psychrotrophic bacterial spores were detected on equipment. B. cereus and psychrotrophic bacterial spores were detected after enrichment in all samples of raw zucchinis, washed zucchinis, of two ingredients (starch and milk proteins) and in processed purée at each processing step. Steam cooking of raw zucchinis and pasteurization of purée in the final package significantly reduced spore numbers to 0.5+/-0.3 log CFU/g in the processed food. During storage, numbers of spore-forming bacteria increased up to 7.8+/-0.1 log CFU/g in purée after 5 days at 20-25 degrees C, 7.5+/-0.3 log CFU/g after 21 days at 10 degrees C and 3.8+/-1.1 log CFU/g after 21 days at 4 degrees C. B. cereus counts reached 6.4+/-0.5 log CFU/g at 20-25 degrees C, 4.6+/-1.9 log CFU/g at 10 degrees C, and remained below the detection threshold (1.7 log CFU/g) at 4 degrees C. Our findings indicate that raw vegetables and texturing agents such as milk proteins and starch, in spite of their low levels of contamination with bacterial spores and the heat treatments they undergo, may significantly contribute to the final contamination of cooked chilled foods. This contamination resulted in growth of B. cereus and psychrotrophic bacterial spores during storage of vegetable purée. Ways to eliminate such contamination in the processing line are discussed.  相似文献   

18.
王彤  林露  严维凌  欧杰  陈敏 《食品科学》2014,35(23):210-214
目的:研究金黄色葡萄球菌在搅打奶油中的生长以及产毒特性。方法:将不同浓度的初始接种量的产A型肠毒素金黄色葡萄球菌菌液接种到奶油中并搅打成型,低接种量控制在2~3(lg(CFU/g)),高接种量控制在4(lg(CFU/g))以上。定时测量不同贮存温度条件下奶油中的金黄色葡萄球菌的菌落总数以及产毒状况。结果:36 ℃条件下生长速率最快,其他温度条件下依次降低;低初接种量水平下,只有36 ℃条件下于27 h检测到产生毒素,其他温度条件下未检测到毒素产生;高初接种量水平条件下,在36 ℃于12 h、25 ℃于24 h、15 ℃于66 h检测到产生毒素,5 ℃条件下金黄色葡萄球菌既不生长,又不产毒。结论:随着温度的升高,金黄色葡萄球菌的生长速率随之升高,产肠毒素的时间也随之缩短,高初始接种量水平肠毒素产生的时间短于低初始接种量水平,肠毒素的产生时间为一般在对数期的中后期,此时金黄色葡萄球菌菌落总数≥6(lg(CFU/g))。  相似文献   

19.
Potato puree and penne pasta were inoculated with cereulide producing B. cereus 5964a and B. cereus NS117. Static incubation at 28 degrees C proved these two foods to be a better substrate for higher cereulide production (4,080 ng/g in puree and 3,200 ng/g in penne were produced by B. cereus 5964a during 48 h of incubation) compared with boiled rice (2,000 ng/g). This difference occurred despite B. cereus counts of more than 10(8) CFU/g in all three products. Aeration of cultures had a negative effect on cereulide production, causing concentrations more than 10-fold lower than in some statically incubated samples. Cereulide production remained undetectable in shaken milk, whereas it reached 1,140 ng/ml in statically incubated milk. At 12 and 22 degrees C, presence of background flora was also a determinative factor. A total B. cereus count of more than 106 CFU/ml did not necessarily lead to uniform cereulide production and was also dependent on the B. cereus strain involved. In this study, we confirm that a number of factors play a crucial role in the determination of the extent to which, if at all, cereulide will be produced. Among those, type of the food, temperature, pH, and whether additional aeration (via incubation on an orbital shaker) is induced had an important role. An important effect was also induced by the cereulide-producing strain involved.  相似文献   

20.

ABSTRACT

Bacillus cereus, bacteria that commonly occur in foods, can potentially cause foodborne illness. Two important factors that contribute to the illness are the number of B. cereus in food and the ability of the organism to produce enterotoxins. This study investigated the number of B. cereus cells in dairy and cereal products in Thailand, using the plate count method and the presence of diarrheal‐enterotoxin genes in the isolates through the polymerase chain reaction (PCR). The genes encoding hemolysin BL (hblA, hblC, hblD), nonhemolytic enterotoxin (nheA, nheB, nheC), cytotoxin K (cytK) and enterotoxin FM (entFM) were the targets of the PCR. B. cereus was found in all pasteurized milk samples and in 37.7% of the cereal product samples, ranging from 50 to 1.7 × 103 cfu/g. PCR results revealed that each gene occurred in more than half of the foodborne isolates tested. A large proportion (96%) of the isolates harbored enterotoxin genes and is considered to be potentially diarrhegenic.

PRACTICAL APPLICATIONS

Significant frequency of Bacillus cereus contamination in pasteurized milk and cereal products, and the large proportion of diarrhegenic strains among foodborne B. cereus indicate the high risk of foodborne illness that could be caused by consumption of these foods in Thailand. This suggests that B. cereus should not be disregarded in its significance in disease control and prevention programs. Also, as complete elimination of this organism from pasteurized milk and most of the cereal products through the processing steps is not possible, proper handling and storage of these foods should be strictly applied by the food industry. This is necessary in order to prevent the growth of the organism to levels that can cause foodborne illness. This research is also relevant to other developing countries having similar situations as Thailand, where data concerning the number of B. cereus in foods, frequency of contamination and proportion of enterotoxigenic B. cereus are limited, and where B. cereus gastroenteritis could be underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号